Synchronization of fractional-order and integer-order chaotic (hyper-chaotic) systems with different dimensions

被引:5
|
作者
Yang, Xiaoyan [1 ]
Liu, Heng [2 ]
Li, Shenggang [1 ]
机构
[1] Shaanxi Normal Univ, Coll Math & Informat Sci, Xian 710119, Shaanxi, Peoples R China
[2] Huainan Normal Univ, Dept Appl Math, Huainan 232038, Peoples R China
基金
中国国家自然科学基金;
关键词
W - Lambda(t) synchronization; fractional-order system; scaling matrix; chaotic (hyper-chaotic) system; FUNCTION PROJECTIVE SYNCHRONIZATION;
D O I
10.1186/s13662-017-1399-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By constructing two scaling matrices, i.e., a function matrix Lambda(t) and a constant matrix W which is not equal to the identity matrix, a kind of W - Lambda(t) synchronization between fractional-order and integer-order chaotic (hyper-chaotic) systems with different dimensions is investigated in this paper. Based on the fractional-order Lyapunov direct method, a controller is designed to drive the synchronization error convergence to zero asymptotically. Finally, four numerical examples are presented to illustrate the effectiveness of the proposed method.
引用
收藏
页数:16
相关论文
共 50 条
  • [11] Synchronization between fractional-order chaotic systems and integer orders chaotic systems (fractional-order chaotic systems)
    周平
    程元明
    邝菲
    [J]. Chinese Physics B, 2010, 19 (09) : 237 - 242
  • [12] On Inverse Problem of Generalized Synchronization Between Different Dimensional Integer-Order and Fractional-Order Chaotic Systems
    Ouannas, Adel
    Azar, Ahmad Taher
    Radwan, Ahmed G.
    [J]. 2016 28TH INTERNATIONAL CONFERENCE ON MICROELECTRONICS (ICM 2016), 2016, : 193 - 196
  • [13] ANTICIPATING SYNCHRONIZATION OF INTEGER ORDER AND FRACTIONAL ORDER HYPER-CHAOTIC CHEN SYSTEM
    Dong Pengzhen
    Shang Gang
    Liu Jie
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2012, 26 (32):
  • [14] Synchronization between integer-order chaotic systems and a class of fractional-order chaotic systems via sliding mode control
    Chen, Diyi
    Zhang, Runfan
    Sprott, J. C.
    Chen, Haitao
    Ma, Xiaoyi
    [J]. CHAOS, 2012, 22 (02)
  • [15] DIVERSE STRUCTURE SYNCHRONIZATION OF FRACTIONAL ORDER HYPER-CHAOTIC SYSTEMS
    Wang Xing-Yuan
    Zhao Guo-Bin
    Yang Yu-Hong
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2013, 27 (11):
  • [16] Fractional-order cuckoo search algorithm for parameter identification of the fractional-order chaotic, chaotic with noise and hyper-chaotic financial systems
    Yousri, Dalia
    Mirjalili, Seyedali
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2020, 92
  • [17] Adaptive modified generalized function projection synchronization between integer-order and fractional-order chaotic systems
    Guan, Junbiao
    [J]. OPTIK, 2016, 127 (10): : 4211 - 4216
  • [18] Synchronisation of integer-order and fractional-order discrete-time chaotic systems
    Ouannas, Adel
    Khennaoui, Amina-Aicha
    Zehrour, Okba
    Bendoukha, Samir
    Grassi, Giuseppe
    Viet-Thanh Pham
    [J]. PRAMANA-JOURNAL OF PHYSICS, 2019, 92 (04):
  • [19] Synchronisation of integer-order and fractional-order discrete-time chaotic systems
    Adel Ouannas
    Amina-Aicha Khennaoui
    Okba Zehrour
    Samir Bendoukha
    Giuseppe Grassi
    Viet-Thanh Pham
    [J]. Pramana, 2019, 92
  • [20] Impulsive Control and Synchronization for Fractional-Order Hyper-Chaotic Financial System
    Li, Xinggui
    Rao, Ruofeng
    Zhong, Shouming
    Yang, Xinsong
    Li, Hu
    Zhang, Yulin
    [J]. MATHEMATICS, 2022, 10 (15)