Projective Synchronization in Coupled Integral and Fractional Order Hyper-chaotic Lorenz Systems

被引:1
|
作者
Xing Lifen [1 ]
Shang Gang [1 ]
Liu Jie [1 ]
Li Xinjie [1 ]
Dong Pengzhen [1 ]
机构
[1] Wuhan Univ Sci & Engn, Res Ctr Nonlinear Sci, Wuhan 430073, Peoples R China
关键词
fractional hyper-chaotic Lorenz system; projective synchronization; scaling factor; GENERALIZED SYNCHRONIZATION; ATTRACTOR; DESIGN;
D O I
10.1109/CINC.2009.224
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Projective synchronization in coupled hyper-chaotic Lorenz systems of integral order and its fractional order commensurate cases are both investigated, respectively. An approximate integer order model for the fractional order hyper-chaotic Lorenz system is constructed while analyzing the projective synchronization scheme of the coupled fractional order hyper-chaotic Lorenz systems. The scaling factor of projective synchronization can be controlled onto a desired value by means of using a state error feedback control method. Illustrations are also given to show the rightness of the theoretical analysis and effectiveness of our proposed methods.
引用
收藏
页码:194 / 197
页数:4
相关论文
共 50 条
  • [1] DIVERSE STRUCTURE SYNCHRONIZATION OF FRACTIONAL ORDER HYPER-CHAOTIC SYSTEMS
    Wang Xing-Yuan
    Zhao Guo-Bin
    Yang Yu-Hong
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2013, 27 (11):
  • [2] Adaptive Hybrid Projective Synchronization Of Hyper-chaotic Systems
    Khan, Ayub
    Chaudhary, Harindri
    [J]. APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2021, 16 (01): : 117 - 138
  • [3] Synchronization of fractional-order and integer-order chaotic (hyper-chaotic) systems with different dimensions
    Xiaoyan Yang
    Heng Liu
    Shenggang Li
    [J]. Advances in Difference Equations, 2017
  • [4] Synchronization of fractional-order and integer-order chaotic (hyper-chaotic) systems with different dimensions
    Yang, Xiaoyan
    Liu, Heng
    Li, Shenggang
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [5] Adaptive tracking control and synchronization of fractional hyper-chaotic Lorenz system with unknown parameters
    Zhao Ling-Dong
    Hu Jian-Bing
    Liu Xu-Hui
    [J]. ACTA PHYSICA SINICA, 2010, 59 (04) : 2305 - 2309
  • [6] ANTICIPATING SYNCHRONIZATION OF INTEGER ORDER AND FRACTIONAL ORDER HYPER-CHAOTIC CHEN SYSTEM
    Dong Pengzhen
    Shang Gang
    Liu Jie
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2012, 26 (32):
  • [7] Complex dynamical behavior and modified projective synchronization in fractional-order hyper-chaotic complex Lu system
    Yang, Li-xin
    Jiang, Jun
    [J]. CHAOS SOLITONS & FRACTALS, 2015, 78 : 267 - 276
  • [8] Generalized projective synchronization of fractional order chaotic systems
    Peng, Guojun
    Jiang, Yaolin
    Chen, Fang
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2008, 387 (14) : 3738 - 3746
  • [9] Parameters identification and adaptive full state hybrid projective synchronization of chaotic (hyper-chaotic) systems
    Hu, Manfeng
    Xu, Zhenyuan
    Zhang, Rong
    Hu, Aihua
    [J]. PHYSICS LETTERS A, 2007, 361 (03) : 231 - 237
  • [10] Impulsive Control and Synchronization for Fractional-Order Hyper-Chaotic Financial System
    Li, Xinggui
    Rao, Ruofeng
    Zhong, Shouming
    Yang, Xinsong
    Li, Hu
    Zhang, Yulin
    [J]. MATHEMATICS, 2022, 10 (15)