Bayesian analysis of the discovery process model using transdimensional Markov chain Monte Carlo

被引:0
|
作者
Sinding-Larsen, R [1 ]
Xu, JZ [1 ]
机构
[1] Norwegian Univ Sci & Technol, Dept Geol & Mineral Resources Engn, N-7491 Trondheim, Norway
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Based upon the Bayesian framework of analyzing the discovery sequence in a play, a transdiniensional Markov chain Monte Carlo algorithm is employed to sample model parameters and pool sizes from their joint posterior distribution. The proposed transdimensional jump algorithm allows for jumps between spaces of different dimensions. The sampling scheme ensures that all the parameter space of changing dimension can be traversed in spite of the unknown number of pools. The equal sample weights make it easy to obtain the confidence intervals and assess the statistical error in the estimates, so that the statistical behaviors of the discovery process modeling can be well understood.
引用
收藏
页码:1040 / 1045
页数:6
相关论文
共 50 条
  • [1] Bayesian analysis of the discovery process model using Markov chain Monte Carlo
    Sinding-Larsen R.
    Xu J.
    [J]. Natural Resources Research, 2005, 14 (4) : 333 - 344
  • [2] Transdimensional transformation based Markov chain Monte Carlo
    Das, Moumita
    Bhattacharya, Sourabh
    [J]. BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2019, 33 (01) : 87 - 138
  • [3] A geometric approach to transdimensional Markov chain Monte Carlo
    Petris, G
    Tardella, L
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2003, 31 (04): : 469 - 482
  • [4] Quantifying uncertainty in transdimensional Markov chain Monte Carlo using discrete Markov models
    Heck, Daniel W.
    Overstall, Antony M.
    Gronau, Quentin F.
    Wagenmakers, Eric-Jan
    [J]. STATISTICS AND COMPUTING, 2019, 29 (04) : 631 - 643
  • [5] Quantifying uncertainty in transdimensional Markov chain Monte Carlo using discrete Markov models
    Daniel W. Heck
    Antony M. Overstall
    Quentin F. Gronau
    Eric-Jan Wagenmakers
    [J]. Statistics and Computing, 2019, 29 : 631 - 643
  • [6] Bayesian estimation of an autoregressive model using Markov chain Monte Carlo
    Barnett, G
    Kohn, R
    Sheather, S
    [J]. JOURNAL OF ECONOMETRICS, 1996, 74 (02) : 237 - 254
  • [7] Bayesian analysis of nested logit model by Markov chain Monte Carlo
    Lahiri, K
    Gao, J
    [J]. JOURNAL OF ECONOMETRICS, 2002, 111 (01) : 103 - 133
  • [8] Bayesian analysis of the stochastic switching regression model using Markov chain Monte Carlo methods
    Odejar M.A.E.
    McNulty M.S.
    [J]. Computational Economics, 2001, Kluwer Academic Publishers (17) : 265 - 284
  • [9] Seismic inversion and uncertainty quantification using transdimensional Markov chain Monte Carlo method
    Zhu, Dehan
    Gibson, Richard
    [J]. GEOPHYSICS, 2018, 83 (04) : R321 - R334
  • [10] Ensemble Bayesian model averaging using Markov Chain Monte Carlo sampling
    Jasper A. Vrugt
    Cees G. H. Diks
    Martyn P. Clark
    [J]. Environmental Fluid Mechanics, 2008, 8 : 579 - 595