Bayesian analysis of the discovery process model using Markov chain Monte Carlo

被引:0
|
作者
Sinding-Larsen R. [1 ]
Xu J. [1 ]
机构
[1] Department of Geology and Mineral Resources Engineering, Norwegian University of Science and Technology
关键词
Bayesian estimation; Discovery process model; Markov chain Monte Carlo (MCMC); Metropolis-Hastings algorithm; Play analysis;
D O I
10.1007/s11053-006-9001-x
中图分类号
学科分类号
摘要
Based upon the Bayesian framework for analyzing the discovery sequence in a play, a Markov chain Monte Carlo sampler-the Metropolis-Hastings algorithm, is employed to sample model parameters and pool sizes from their joint posterior distribution. The proposed sampling scheme ensures that the parameter space of changing dimension can be traversed in spite of the unknown number of pools. The equal sample weights make it easy to obtain the confidence intervals and assess the statistical error in the estimates, so that the statistical behaviors of the discovery process modeling can be well understood. Two application examples of the Halten play in Norwegian Sea and the Bashaw reef play in the Western Canada Basin show that, the computational advantage of this method to the simple Monte Carlo integration is considerable. In order to increase the convergence speed of the sample chains to the posterior distributions, several parallel simulations with different starting values are recommended. © 2005 International Association for Mathematical Geology.
引用
收藏
页码:333 / 344
页数:11
相关论文
共 50 条
  • [1] Bayesian analysis of the discovery process model using transdimensional Markov chain Monte Carlo
    Sinding-Larsen, R
    Xu, JZ
    [J]. GIS and Spatial Analysis, Vol 1and 2, 2005, : 1040 - 1045
  • [2] Bayesian estimation of an autoregressive model using Markov chain Monte Carlo
    Barnett, G
    Kohn, R
    Sheather, S
    [J]. JOURNAL OF ECONOMETRICS, 1996, 74 (02) : 237 - 254
  • [3] Bayesian analysis of nested logit model by Markov chain Monte Carlo
    Lahiri, K
    Gao, J
    [J]. JOURNAL OF ECONOMETRICS, 2002, 111 (01) : 103 - 133
  • [4] Bayesian analysis of the stochastic switching regression model using Markov chain Monte Carlo methods
    Odejar M.A.E.
    McNulty M.S.
    [J]. Computational Economics, 2001, Kluwer Academic Publishers (17) : 265 - 284
  • [5] Ensemble Bayesian model averaging using Markov Chain Monte Carlo sampling
    Jasper A. Vrugt
    Cees G. H. Diks
    Martyn P. Clark
    [J]. Environmental Fluid Mechanics, 2008, 8 : 579 - 595
  • [6] Ensemble Bayesian model averaging using Markov Chain Monte Carlo sampling
    Vrugt, Jasper A.
    Diks, Cees G. H.
    Clark, Martyn P.
    [J]. ENVIRONMENTAL FLUID MECHANICS, 2008, 8 (5-6) : 579 - 595
  • [7] Bayesian model selection for time series using Markov chain Monte Carlo
    Troughton, PT
    Godsill, SJ
    [J]. 1997 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I - V: VOL I: PLENARY, EXPERT SUMMARIES, SPECIAL, AUDIO, UNDERWATER ACOUSTICS, VLSI; VOL II: SPEECH PROCESSING; VOL III: SPEECH PROCESSING, DIGITAL SIGNAL PROCESSING; VOL IV: MULTIDIMENSIONAL SIGNAL PROCESSING, NEURAL NETWORKS - VOL V: STATISTICAL SIGNAL AND ARRAY PROCESSING, APPLICATIONS, 1997, : 3733 - 3736
  • [8] BAYESIAN CALIBRATION OF A CERVICAL CANCER MODEL USING MARKOV CHAIN MONTE CARLO
    Walsh, C.
    Ortendahl, J.
    Sy, S.
    Kim, J.
    [J]. VALUE IN HEALTH, 2011, 14 (07) : A470 - A470
  • [9] Slope Stability Analysis Using Bayesian Markov Chain Monte Carlo Method
    Fattahi, Hadi
    Ilghani, Nastaran Zandy
    [J]. GEOTECHNICAL AND GEOLOGICAL ENGINEERING, 2020, 38 (03) : 2609 - 2618
  • [10] Slope Stability Analysis Using Bayesian Markov Chain Monte Carlo Method
    Hadi Fattahi
    Nastaran Zandy Ilghani
    [J]. Geotechnical and Geological Engineering, 2020, 38 : 2609 - 2618