Bayesian analysis of nested logit model by Markov chain Monte Carlo

被引:15
|
作者
Lahiri, K [1 ]
Gao, J [1 ]
机构
[1] SUNY Albany, Dept Econ, Albany, NY 12222 USA
关键词
discrete choice; random utility maximization; MCMC; mixing speed;
D O I
10.1016/S0304-4076(02)00125-2
中图分类号
F [经济];
学科分类号
02 ;
摘要
We develop a Markov chain Monte Carlo algorithm for estimating nested logit models in a Bayesian framework. Appropriate "heating target" and reparametetization techniques are adopted for fast mixing. For illustrative purposes, we have implemented the algorithm on two real-life examples involving 3-level structures. The first example involves social security's disability determination process (Soc. Security Bull. 58 (1995) 3). The second one is taken from Amemiya and Shimono's (Econ. Stud. Q. 40 (1989) 14) model of labor supply behavior of the aged. We applied a combination of various convergence criteria to ensure that the chain has converged to its target distribution. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:103 / 133
页数:31
相关论文
共 50 条
  • [1] Layered nested Markov chain Monte Carlo
    Jackson, Nicholas E.
    Webb, Michael A.
    de Pablo, Juan J.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2018, 149 (07):
  • [2] Bayesian analysis of the discovery process model using Markov chain Monte Carlo
    Sinding-Larsen R.
    Xu J.
    [J]. Natural Resources Research, 2005, 14 (4) : 333 - 344
  • [3] Option Pricing Model Biases: Bayesian and Markov Chain Monte Carlo Regression Analysis
    Sharif Mozumder
    Taufiq Choudhry
    Michael Dempsey
    [J]. Computational Economics, 2021, 57 : 1287 - 1305
  • [4] Option Pricing Model Biases: Bayesian and Markov Chain Monte Carlo Regression Analysis
    Mozumder, Sharif
    Choudhry, Taufiq
    Dempsey, Michael
    [J]. COMPUTATIONAL ECONOMICS, 2021, 57 (04) : 1287 - 1305
  • [5] Bayesian analysis of the discovery process model using transdimensional Markov chain Monte Carlo
    Sinding-Larsen, R
    Xu, JZ
    [J]. GIS and Spatial Analysis, Vol 1and 2, 2005, : 1040 - 1045
  • [6] Bayesian estimation of an autoregressive model using Markov chain Monte Carlo
    Barnett, G
    Kohn, R
    Sheather, S
    [J]. JOURNAL OF ECONOMETRICS, 1996, 74 (02) : 237 - 254
  • [7] Bayesian inference of BWR model parameters by Markov chain Monte Carlo
    Zio, E.
    Zoia, A.
    [J]. ANNALS OF NUCLEAR ENERGY, 2008, 35 (10) : 1929 - 1936
  • [8] Empirical Markov Chain Monte Carlo Bayesian analysis of fMRI data
    de Pasquale, F.
    Del Gratta, C.
    Romani, G. L.
    [J]. NEUROIMAGE, 2008, 42 (01) : 99 - 111
  • [9] Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees
    Larget, B
    Simon, DL
    [J]. MOLECULAR BIOLOGY AND EVOLUTION, 1999, 16 (06) : 750 - 759
  • [10] Markov Chain Monte Carlo Methods for Bayesian Data Analysis in Astronomy
    Sharma, Sanjib
    [J]. ANNUAL REVIEW OF ASTRONOMY AND ASTROPHYSICS, VOL 55, 2017, 55 : 213 - 259