Parametric eigenvalue problems with constraints for variational-hemivariational inequalities

被引:0
|
作者
Motreanu, D [1 ]
机构
[1] Univ Perpignan, Dept Math, F-66860 Perpignan, France
关键词
variational-hemivariational inequality; eigenvalue problem; critical point;
D O I
10.1016/j.na.2004.12.039
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to treat general nonlinear eigenvalue problems for variational-hemivariational inequalities which depend on a parameter. A result ensuring the existence and location information for the solutions is given by using a new minimax method. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:966 / 976
页数:11
相关论文
共 50 条
  • [41] Evolutionary variational-hemivariational inequalities: Existence and comparison results
    Carl, Siegfried
    Le, Vy K.
    Motreanu, Dumitru
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 345 (01) : 545 - 558
  • [42] A nonsmooth principle of symmetric criticality and variational-hemivariational inequalities
    Kristaly, Alexandru
    Varga, Csaba
    Varga, Viorica
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 325 (02) : 975 - 986
  • [43] Well-Posedness by Perturbations for Variational-Hemivariational Inequalities
    Lv, Shu
    Xiao, Yi-bin
    Liu, Zhi-bin
    Li, Xue-song
    [J]. JOURNAL OF APPLIED MATHEMATICS, 2012,
  • [44] VARIATIONAL-HEMIVARIATIONAL INEQUALITIES WITH NONHOMOGENEOUS NEUMANN BOUNDARY CONDITION
    Motreanu, Dumitru
    Winkert, Patrick
    [J]. MATEMATICHE, 2010, 65 (02): : 109 - 119
  • [45] Multi-Valued Parabolic Variational Inequalities and Related Variational-Hemivariational Inequalities
    Carl, Siegfried
    Vy Khoi Le
    [J]. ADVANCED NONLINEAR STUDIES, 2014, 14 (03) : 631 - 659
  • [46] A New Class of History-Dependent Evolutionary Variational-Hemivariational Inequalities with Unilateral Constraints
    Migorski, Stanislaw
    Zeng, Biao
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 84 (03): : 2671 - 2697
  • [47] Existence of Solutions for a Class of Noncoercive Variational-Hemivariational Inequalities Arising in Contact Problems
    Liu, Yongjian
    Liu, Zhenhai
    Wen, Ching-Feng
    Yao, Jen-Chih
    Zeng, Shengda
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 84 (02): : 2037 - 2059
  • [48] A class of history-dependent variational-hemivariational inequalities
    Mircea Sofonea
    Stanisław Migórski
    [J]. Nonlinear Differential Equations and Applications NoDEA, 2016, 23
  • [49] Differential variational-hemivariational inequalities with application to contact mechanics
    Migorski, Stanislaw
    Cai, Dong-ling
    Dudek, Sylwia
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2023, 71
  • [50] A class of history-dependent variational-hemivariational inequalities
    Sofonea, Mircea
    Migorski, Stanislaw
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2016, 23 (03):