Parametric eigenvalue problems with constraints for variational-hemivariational inequalities

被引:0
|
作者
Motreanu, D [1 ]
机构
[1] Univ Perpignan, Dept Math, F-66860 Perpignan, France
关键词
variational-hemivariational inequality; eigenvalue problem; critical point;
D O I
10.1016/j.na.2004.12.039
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to treat general nonlinear eigenvalue problems for variational-hemivariational inequalities which depend on a parameter. A result ensuring the existence and location information for the solutions is given by using a new minimax method. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:966 / 976
页数:11
相关论文
共 50 条
  • [21] On inverse variational-hemivariational inequalities and its regularization
    Mahalik, K.
    Nahak, C.
    [J]. OPTIMIZATION, 2024,
  • [22] Convergence Results for Elliptic Variational-Hemivariational Inequalities
    Cai, Dong-ling
    Sofonea, Mircea
    Xiao, Yi-bin
    [J]. ADVANCES IN NONLINEAR ANALYSIS, 2021, 10 (01) : 2 - 23
  • [23] Contact models leading to variational-hemivariational inequalities
    Costea, Nicusor
    Matei, Andaluzia
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 386 (02) : 647 - 660
  • [24] MULTIPLICITY RESULTS TO A CLASS OF VARIATIONAL-HEMIVARIATIONAL INEQUALITIES
    Bonanno, Gabriele
    Winkert, Patrick
    [J]. TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2014, 43 (02) : 493 - 516
  • [25] General Comparison Principle for Variational-Hemivariational Inequalities
    Siegfried Carl
    Patrick Winkert
    [J]. Journal of Inequalities and Applications, 2009
  • [26] Numerical analysis of stationary variational-hemivariational inequalities
    Weimin Han
    Mircea Sofonea
    David Danan
    [J]. Numerische Mathematik, 2018, 139 : 563 - 592
  • [27] Numerical analysis of stationary variational-hemivariational inequalities
    Han, Weimin
    Sofonea, Mircea
    Danan, David
    [J]. NUMERISCHE MATHEMATIK, 2018, 139 (03) : 563 - 592
  • [28] Optimal Control of Elliptic Variational-Hemivariational Inequalities
    Peng, Zijia
    Kunisch, Karl
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2018, 178 (01) : 1 - 25
  • [29] Existence and comparison results for variational-hemivariational inequalities
    S Carl
    [J]. Journal of Inequalities and Applications, 2005
  • [30] A Fixed Point Approach of Variational-Hemivariational Inequalities
    Hu, Rong
    Sofonea, Mircea
    Xiao, Yi-Bin
    [J]. CARPATHIAN JOURNAL OF MATHEMATICS, 2022, 38 (03) : 573 - 581