A nonsmooth principle of symmetric criticality and variational-hemivariational inequalities

被引:19
|
作者
Kristaly, Alexandru [1 ]
Varga, Csaba
Varga, Viorica
机构
[1] Univ Babes Bolyai, Fac Econ, Cluj Napoca 400591, Romania
[2] Univ Babes Bolyai, Fac Math & Informat, Cluj Napoca 400084, Romania
关键词
Motreanu-Panagiotopoulos type functional; principle of symmetric criticality; variational-hemivariational inequalities; unbounded;
D O I
10.1016/j.jmaa.2006.02.062
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove the principle of symmetric criticality for Motreanu-Panagiotopoulos type functionals, i.e., for convex, proper, lower semicontinuous functionals which are perturbed by a locally Lipschitz function. By means of this principle a variational-hemivariational inequality is studied on certain type of unbounded strips. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:975 / 986
页数:12
相关论文
共 50 条
  • [1] Some applications to variational-hemivariational inequalities of the principle of symmetric criticality for motreanu-panagiotopoulos type functionals
    Lisei, Hannelore
    Varga, Csaba
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2006, 36 (02) : 283 - 305
  • [2] General Comparison Principle for Variational-Hemivariational Inequalities
    Siegfried Carl
    Patrick Winkert
    [J]. Journal of Inequalities and Applications, 2009
  • [3] General Comparison Principle for Variational-Hemivariational Inequalities
    Carl, Siegfried
    Winkert, Patrick
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2009,
  • [4] VARIATIONAL-HEMIVARIATIONAL INEQUALITIES ON UNBOUNDED DOMAINS
    Kristaly, Alexandru
    Varga, Csaba
    [J]. STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2010, 55 (02): : 3 - 87
  • [5] ON VARIATIONAL-HEMIVARIATIONAL INEQUALITIES WITH NONCONVEX CONSTRAINTS
    Chadli, Ouayl
    Yao, Jen-Chih
    [J]. JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2021, 5 (06): : 893 - 907
  • [6] On the optimal control of variational-hemivariational inequalities
    Xiao, Yi-bin
    Sofonea, Mircea
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 475 (01) : 364 - 384
  • [7] Existence theorems of the variational-hemivariational inequalities
    Guo-ji Tang
    Nan-jing Huang
    [J]. Journal of Global Optimization, 2013, 56 : 605 - 622
  • [8] Some Applications to Variational–Hemivariational Inequalities of the Principle of Symmetric Criticality for Motreanu–Panagiotopoulos Type Functionals
    Hannelore Lisei
    Csaba Varga
    [J]. Journal of Global Optimization, 2006, 36 : 283 - 305
  • [9] On convergence of solutions to variational-hemivariational inequalities
    Zeng, Biao
    Liu, Zhenhai
    Migorski, Stanislaw
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (03):
  • [10] On regularity results for variational-hemivariational inequalities
    Naniewicz, Z
    Panagiotopoulos, PD
    [J]. DIRECT AND INVERSE PROBLEMS OF MATHEMATICAL PHYSICS, 2000, 5 : 301 - 322