Bias-corrected maximum likelihood estimator of the intraclass correlation parameter for binary data

被引:6
|
作者
Saha, KK [1 ]
Paul, SR [1 ]
机构
[1] Univ Windsor, Dept Math & Stat, Windsor, ON N9B 3P4, Canada
关键词
bias-corrected maximum likelihood; double extended quasi-likelihood; optimal quadratic estimating equations; toxicological data;
D O I
10.1002/sim.2197
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
A popular model to analyse over/under-dispersed proportions is to assume the extended beta binomial model with dispersion (intraclass correlation) parameter phi and then to estimate this parameter by maximum likelihood. However, it is well known that maximum likelihood estimate (MLE) may be biased when the sample size n or the total Fisher information is small. In this paper we obtain a bias-corrected maximum likelihood (BCML) estimator of the intraclass correlation parameter and compare it, by simulation, in terms of bias and efficiency, with the MLE, an estimator Q(2) based on optimal quadratic estimating equations of Crowder and recommended by Paul et al. and a double extended quasi-likelihood (DEQL) estimator proposed by Lee. The BCML estimator has superior bias and efficiency properties in most instances. Analyses of a set of toxicological data from Paul and a set of medical data pertaining to chromosomal abnormalities among survivors of the atomic bomb in Hiroshima from Otake and Prentice show, in general, much improvement in standard errors of the BCML estimates over the other three estimates. Copyright (C) 2005 John Wiley & Sons, Ltd.
引用
收藏
页码:3497 / 3512
页数:16
相关论文
共 50 条
  • [11] Bias corrected maximum likelihood estimator under the Generalized Linear Model for a binary variable
    Park, Mingue
    Choi, Boseung
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2008, 37 (08) : 1507 - 1514
  • [12] A bias-corrected estimator in multiple imputation for missing data
    Tomita, Hiroaki
    Fujisawa, Hironori
    Henmi, Masayuki
    [J]. STATISTICS IN MEDICINE, 2018, 37 (23) : 3373 - 3386
  • [13] Bias-corrected maximum likelihood estimators of the parameters of the inverse Weibull distribution
    Mazucheli, Josmar
    Berdusco Menezes, Andre Felipe
    Dey, Sanku
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2019, 48 (07) : 2046 - 2055
  • [14] Bias-corrected maximum likelihood estimation of the parameters of the complex Bingham distribution
    Dore, Luiz H. G.
    Amaral, Getulio J. A.
    Cruz, Jorge T. M.
    Wood, Andrew T. A.
    [J]. BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2016, 30 (03) : 385 - 400
  • [15] Bias-corrected maximum likelihood estimation of the parameters of the generalized Pareto distribution
    Giles, David E.
    Feng, Hui
    Godwin, Ryan T.
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2016, 45 (08) : 2465 - 2483
  • [16] Bias-Corrected maximum likelihood estimation of the parameters of the weighted Lindley distribution
    Wang, Min
    Wang, Wentao
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (01) : 530 - 545
  • [17] Estimation of bias-corrected intraclass correlation coefficient for unbalanced clustered studies with continuous outcomes
    Shan, Guogen
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (11) : 6691 - 6700
  • [18] Bias-corrected maximum-likelihood estimation of multiplicity of infection and lineage frequencies
    Hashemi, Meraj
    Schneider, Kristan A.
    [J]. PLOS ONE, 2021, 16 (12):
  • [19] A Bias-Corrected Kaplan-Meier Estimator
    Jiang, Renyan
    [J]. 2020 ASIA-PACIFIC INTERNATIONAL SYMPOSIUM ON ADVANCED RELIABILITY AND MAINTENANCE MODELING (APARM), 2020,
  • [20] Bias-Corrected Maximum Likelihood Estimators of the Parameters of the Unit-Weibull Distribution
    Mazucheli, J.
    Menezes, A. F. B.
    Alqallaf, F.
    Ghitany, M. E.
    [J]. AUSTRIAN JOURNAL OF STATISTICS, 2021, 50 (03) : 41 - 53