Bias-corrected maximum likelihood estimator of the intraclass correlation parameter for binary data

被引:6
|
作者
Saha, KK [1 ]
Paul, SR [1 ]
机构
[1] Univ Windsor, Dept Math & Stat, Windsor, ON N9B 3P4, Canada
关键词
bias-corrected maximum likelihood; double extended quasi-likelihood; optimal quadratic estimating equations; toxicological data;
D O I
10.1002/sim.2197
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
A popular model to analyse over/under-dispersed proportions is to assume the extended beta binomial model with dispersion (intraclass correlation) parameter phi and then to estimate this parameter by maximum likelihood. However, it is well known that maximum likelihood estimate (MLE) may be biased when the sample size n or the total Fisher information is small. In this paper we obtain a bias-corrected maximum likelihood (BCML) estimator of the intraclass correlation parameter and compare it, by simulation, in terms of bias and efficiency, with the MLE, an estimator Q(2) based on optimal quadratic estimating equations of Crowder and recommended by Paul et al. and a double extended quasi-likelihood (DEQL) estimator proposed by Lee. The BCML estimator has superior bias and efficiency properties in most instances. Analyses of a set of toxicological data from Paul and a set of medical data pertaining to chromosomal abnormalities among survivors of the atomic bomb in Hiroshima from Otake and Prentice show, in general, much improvement in standard errors of the BCML estimates over the other three estimates. Copyright (C) 2005 John Wiley & Sons, Ltd.
引用
收藏
页码:3497 / 3512
页数:16
相关论文
共 50 条
  • [41] A NOTE ON THE BIAS AND VARIANCE OF THE MAXIMUM-LIKELIHOOD ESTIMATOR OF THE GROWTH-RATE PARAMETER
    RAO, ULG
    [J]. BIOMETRICAL JOURNAL, 1986, 28 (06) : 763 - 765
  • [42] BIAS-CORRECTED MAXIMUM-LIKELIHOOD INFERENCE FOR INDIVIDUAL REGRESSION-COEFFICIENTS IN A GAMMA REGRESSION-MODEL
    BAKIR, ST
    YOUNG, DH
    [J]. JOURNAL OF THE UNIVERSITY OF KUWAIT-SCIENCE, 1987, 14 (02): : 225 - 232
  • [43] Evaluating treatment effectiveness under model misspecification: A comparison of targeted maximum likelihood estimation with bias-corrected matching
    Kreif, Noemi
    Gruber, Susan
    Radice, Rosalba
    Grieve, Richard
    Sekhon, Jasjeet S.
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2016, 25 (05) : 2315 - 2336
  • [44] Bias-corrected confidence intervals for the concentration parameter in a dilution assay
    Wang, JP
    Basu, S
    [J]. BIOMETRICS, 1999, 55 (01) : 111 - 116
  • [45] Forecasting autoregressive time series with bias-corrected parameter estimators
    Kim, JH
    [J]. INTERNATIONAL JOURNAL OF FORECASTING, 2003, 19 (03) : 493 - 502
  • [46] Bias-Corrected Maximum Likelihood Estimation and Bayesian Inference for the Process Performance Index Using Inverse Gaussian Distribution
    Tsai, Tzong-Ru
    Xin, Hua
    Fan, Ya-Yen
    Lio, Yuhlong
    [J]. STATS, 2022, 5 (04): : 1079 - 1096
  • [47] A Bias-Corrected Method for Fractional Linear Parameter Varying Systems
    Yakoub, Zaineb
    Naifar, Omar
    Amairi, Messaoud
    Chetoui, Manel
    Aoun, Mohamed
    Ben Makhlouf, Abdellatif
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022
  • [48] Bias-corrected empirical likelihood in a multi-link semiparametric model
    Zhu, Lixing
    Lin, Lu
    Cui, Xia
    Li, Gaorong
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2010, 101 (04) : 850 - 868
  • [49] Bias-corrected estimation in dynamic panel data models
    Bun, MJG
    Carree, MA
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2005, 23 (02) : 200 - 210