STABILITY OF EXACT SOLUTIONS OF THE CUBIC-QUINTIC NONLINEAR SCHRODINGER EQUATION WITH PERIODIC POTENTIAL

被引:0
|
作者
Kengne, E. [1 ,2 ]
Vaillancourt, R. [2 ]
机构
[1] Univ Ottawa, Ottawa, ON, Canada
[2] Univ Dschang, Douala, Cameroon
来源
NONLINEAR OSCILLATIONS | 2011年 / 13卷 / 04期
基金
加拿大自然科学与工程研究理事会;
关键词
BOSE-EINSTEIN CONDENSATE; SOLITONS; COLLAPSE;
D O I
10.1007/s11072-011-0132-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The nonlinear Schrodinger equation with attractive quintic nonlinearity in periodic potential in 1D, modeling a dilute-gas Bose-Einstein condensate in a lattice potential, is considered and one family of exact stationary solutions is discussed. Some of these solutions have an analog neither in the linear Schrodinger equation nor in the integrable nonlinear Schrodinger equation. Their stability is examined analytically and numerically.
引用
收藏
页码:569 / 583
页数:15
相关论文
共 50 条
  • [31] Exact solutions and optical soliton solutions for the nonlinear Schrodinger equation with fourth-order dispersion and cubic-quintic nonlinearity
    Zayed, Elsayed M. E.
    Al-Nowehy, Abdul-Ghani
    [J]. RICERCHE DI MATEMATICA, 2017, 66 (02) : 531 - 552
  • [32] Exact bright-dark solitary wave solutions of the higher-order cubic-quintic nonlinear Schrodinger equation and its stability
    Arshad, M.
    Seadawy, Aly R.
    Lu, Dianchen
    [J]. OPTIK, 2017, 138 : 40 - 49
  • [33] Dynamics of cubic-quintic nonlinear Schrodinger equation with different parameters
    Hua, Wei
    Liu, Xue-Shen
    Liu, Shi-Xing
    [J]. CHINESE PHYSICS B, 2016, 25 (05)
  • [34] Solitons for the cubic-quintic nonlinear Schrodinger equation with varying coefficients
    Chen Yuan-Ming
    Ma Song-Hua
    Ma Zheng-Yi
    [J]. CHINESE PHYSICS B, 2012, 21 (05)
  • [35] A variational approach in the dissipative cubic-quintic nonlinear Schrodinger equation
    Freitas, DS
    De Oliveira, JR
    [J]. MODERN PHYSICS LETTERS B, 2002, 16 (1-2): : 27 - 32
  • [36] On vortex and dark solitons in the cubic-quintic nonlinear Schrodinger equation
    Paredes, Angel
    Salgueiro, Jose R.
    Michinel, Humberto
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2022, 437
  • [37] Multistable solitons in the cubic-quintic discrete nonlinear Schrodinger equation
    Carretero-Gonzalez, R.
    Talley, J. D.
    Chong, C.
    Malomed, B. A.
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2006, 216 (01) : 77 - 89
  • [38] Drag force in bimodal cubic-quintic nonlinear Schrodinger equation
    Feijoo, David
    Ordonez, Ismael
    Paredes, Angel
    Michinel, Humberto
    [J]. PHYSICAL REVIEW E, 2014, 90 (03):
  • [39] Exact periodic wave solutions of the cubic-quintic Zakharov equation and their evolution with Hamilton energy
    Guo, Yuli
    Zhang, Weiguo
    Li, Xiang
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2024, 57 (06)
  • [40] Exact solutions for the high-order dispersive cubic-quintic nonlinear Schrodinger equation by the extended hyperbolic auxiliary equation method
    Zhu, Shun-Dong
    [J]. CHAOS SOLITONS & FRACTALS, 2007, 34 (05) : 1608 - 1612