Non-instantaneous impulsive fractional-order delay differential systems with Mittag-Leffler kernel

被引:5
|
作者
Kavitha, Velusamy [1 ]
Arjunan, Mani Mallika [2 ]
Baleanu, Dumitru [3 ,4 ,5 ]
机构
[1] Karunya Inst Technol & Sci, Sch Sci Arts Media & Management, Dept Math, Coimbatore 641114, Tamil Nadu, India
[2] SASTRA Deemed Univ, Sch Arts Sci & Humanities, Dept Math, Thanjavur 613401, Tamil Nadu, India
[3] Cankaya Univ, Fac Art & Sci, Dept Math & Comp Sci, TR-06530 Ankara, Turkey
[4] Inst Space Sci, Magurele, Romania
[5] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan
来源
AIMS MATHEMATICS | 2022年 / 7卷 / 05期
关键词
Atangana-Baleanu fractional derivative; non-instantaneous impulses; Mittag-Leffler kernel; fixed point theorem; EQUATIONS; EXISTENCE;
D O I
10.3934/math.2022519
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The existence of fractional-order functional differential equations with non-instantaneous impulses within the Mittag-Leffler kernel is examined in this manuscript. Non-instantaneous impulses are involved in such equations and the solution semigroup is not compact in Banach spaces. We suppose that the nonlinear term fulfills a non-compactness measure criterion and a local growth constraint. We further assume that non-instantaneous impulsive functions satisfy specific Lipschitz criteria. Finally, an example is given to justify the theoretical results.
引用
收藏
页码:9353 / 9372
页数:20
相关论文
共 50 条
  • [1] MITTAG-LEFFLER STABILITY FOR NON-INSTANTANEOUS IMPULSIVE CAPUTO FRACTIONAL DIFFERENTIAL EQUATIONS WITH DELAYS
    Agarwal, Ravi
    Hristova, Snezhana
    O'Regan, Donal
    MATHEMATICA SLOVACA, 2019, 69 (03) : 583 - 598
  • [2] Mittag-Leffler Stability for Non-instantaneous Impulsive Generalized Proportional Caputo Fractional Differential Equations
    Hristova, Snezhana
    NEW TRENDS IN THE APPLICATIONS OF DIFFERENTIAL EQUATIONS IN SCIENCES, NTADES 2023, 2024, 449 : 209 - 219
  • [3] EXISTENCE RESULTS FOR A FRACTIONAL DIFFERENTIAL EQUATION WITH NON-INSTANTANEOUS IMPULSES WITHIN MITTAG-LEFFLER KERNEL
    Kavitha, V.
    Swetha, S. Jasmin
    Arjunan, M. Mallika
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2023, 13 : 563 - 574
  • [4] Mittag-Leffler Stability of Homogeneous Fractional-Order Systems With Delay
    Lien, Nguyen Thi
    Hien, Le Van
    Thang, Nguyen Nhu
    IEEE CONTROL SYSTEMS LETTERS, 2024, 8 : 3243 - 3248
  • [5] Mittag-Leffler Stability of Impulsive Nonlinear Fractional-Order Systems with Time Delays
    Mathiyalagan, K.
    Ma, Yong-Ki
    IRANIAN JOURNAL OF SCIENCE, 2023, 47 (01) : 99 - 108
  • [6] MITTAG-LEFFLER STABILITY OF IMPULSIVE DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER
    Stamova, Ivanka M.
    QUARTERLY OF APPLIED MATHEMATICS, 2015, 73 (03) : 525 - 535
  • [7] Robust Mittag-Leffler stabilisation of fractional-order systems
    Jonathan Munoz-Vazquez, Aldo
    Parra-Vega, Vicente
    Sanchez-Orta, Anand
    Martinez-Reyes, Fernando
    ASIAN JOURNAL OF CONTROL, 2020, 22 (06) : 2273 - 2281
  • [8] Ulam–Hyers–Mittag-Leffler stability for ψ-Hilfer fractional-order delay differential equations
    Kui Liu
    JinRong Wang
    Donal O’Regan
    Advances in Difference Equations, 2019
  • [9] Mittag-Leffler synchronization of fractional-order uncertain chaotic systems
    Wang Qiao
    Ding Dong-Sheng
    Qi Dong-Lian
    CHINESE PHYSICS B, 2015, 24 (06)
  • [10] A Mittag-Leffler fractional-order difference observer
    Miguel Delfin-Prieto, Sergio
    Martinez-Guerra, Rafael
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2020, 357 (05): : 2997 - 3018