Hypercube subgraphs with local detours

被引:0
|
作者
Hamburger, P [1 ]
Kostochka, AV
Sidorenko, A
机构
[1] Indiana Univ Purdue Univ, Dept Math Sci, Ft Wayne, IN 46805 USA
[2] Inst Math, Novosibirsk 630090, Russia
[3] NYU, Courant Inst Math Sci, New York, NY 10012 USA
关键词
hypercube; minimal detour; local detour;
D O I
10.1002/(SICI)1097-0118(199902)30:2<101::AID-JGT4>3.3.CO;2-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A minimal detour subgraph of the n-dimensional cube is a spanning subgraph G of Q(n) having the property that, for vertices x, y of Q(n), distances are related by d(G)(x, y) less than or equal to d(Qn)(x, y)+2. For a spanning subgraph G of Q(n) to be a local detour subgraph, we require only that the above inequality be satisfied whenever x and y are adjacent in Q(n). Let f(n) (respectively, f(l)(n)) denote the minimum number of edges in any minimal detour (respectively, local detour) subgraph of Q(n) (cf. Erdos et al. [1]). In this article, we find the asymptotics of fi(n) by showing that 3.2(n)(1 - O(n(-1/2))) < fi (n) < 3.2(n)(1 + o(1)). We also show that f(n) > 3.00001.2(n) Vbr n > no), thus eventually fi(n) < f(n), answering a question of II] in the negative. We find the order of magnitude of FI(n), the minimum possible maximum degree in a local detour subgraph of Q(n) : root 2n+0.25- 0.5 less than or equal to Fl (n) less than or equal to 1.5 root 2n - 1. (C) 1999 John Wiley & Sons, Inc.
引用
下载
收藏
页码:101 / 111
页数:11
相关论文
共 50 条
  • [1] Hypercube subgraphs with minimal detours
    Erdos, P
    Hamburger, P
    Pippert, RE
    Weakley, WD
    JOURNAL OF GRAPH THEORY, 1996, 23 (02) : 119 - 128
  • [2] Saturated Subgraphs of the Hypercube
    Johnson, J. Robert
    Pinto, Trevor
    COMBINATORICS PROBABILITY & COMPUTING, 2017, 26 (01): : 52 - 67
  • [3] Bulky subgraphs of the hypercube
    Kotlov, A
    EUROPEAN JOURNAL OF COMBINATORICS, 2000, 21 (04) : 503 - 507
  • [4] Various parameters of subgraphs and supergraphs of the hypercube
    Northeastern University
    1600,
  • [5] On 2-Detour Subgraphs of the Hypercube
    József Balogh
    Alexandr Kostochka
    Graphs and Combinatorics, 2008, 24 : 265 - 272
  • [6] On 2-detour subgraphs of the hypercube
    Balogh, Jozsef
    Kostochka, Alexandr
    GRAPHS AND COMBINATORICS, 2008, 24 (04) : 265 - 272
  • [7] RADIUS AND DIAMETER OF RANDOM SUBGRAPHS OF THE HYPERCUBE
    KOSTOCHKA, AV
    SAPOZHENKO, AA
    WEBER, K
    RANDOM STRUCTURES & ALGORITHMS, 1993, 4 (02) : 215 - 229
  • [8] On even-cycle-free subgraphs of the hypercube
    Fueredi, Zoltan
    Ozkahya, Lale
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2011, 118 (06) : 1816 - 1819
  • [9] SUBGRAPHS OF A HYPERCUBE CONTAINING NO SMALL EVEN CYCLES
    CHUNG, FRK
    JOURNAL OF GRAPH THEORY, 1992, 16 (03) : 273 - 286
  • [10] On 14-Cycle-Free Subgraphs of the Hypercube
    Furedi, Zoltan
    Ozkahya, Lale
    COMBINATORICS PROBABILITY & COMPUTING, 2009, 18 (05): : 725 - 729