Hypercube subgraphs with local detours

被引:0
|
作者
Hamburger, P [1 ]
Kostochka, AV
Sidorenko, A
机构
[1] Indiana Univ Purdue Univ, Dept Math Sci, Ft Wayne, IN 46805 USA
[2] Inst Math, Novosibirsk 630090, Russia
[3] NYU, Courant Inst Math Sci, New York, NY 10012 USA
关键词
hypercube; minimal detour; local detour;
D O I
10.1002/(SICI)1097-0118(199902)30:2<101::AID-JGT4>3.3.CO;2-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A minimal detour subgraph of the n-dimensional cube is a spanning subgraph G of Q(n) having the property that, for vertices x, y of Q(n), distances are related by d(G)(x, y) less than or equal to d(Qn)(x, y)+2. For a spanning subgraph G of Q(n) to be a local detour subgraph, we require only that the above inequality be satisfied whenever x and y are adjacent in Q(n). Let f(n) (respectively, f(l)(n)) denote the minimum number of edges in any minimal detour (respectively, local detour) subgraph of Q(n) (cf. Erdos et al. [1]). In this article, we find the asymptotics of fi(n) by showing that 3.2(n)(1 - O(n(-1/2))) < fi (n) < 3.2(n)(1 + o(1)). We also show that f(n) > 3.00001.2(n) Vbr n > no), thus eventually fi(n) < f(n), answering a question of II] in the negative. We find the order of magnitude of FI(n), the minimum possible maximum degree in a local detour subgraph of Q(n) : root 2n+0.25- 0.5 less than or equal to Fl (n) less than or equal to 1.5 root 2n - 1. (C) 1999 John Wiley & Sons, Inc.
引用
收藏
页码:101 / 111
页数:11
相关论文
共 50 条
  • [31] A NON-LOCAL RANDOM WALK ON THE HYPERCUBE
    Nestoridi, Evita
    ADVANCES IN APPLIED PROBABILITY, 2017, 49 (04) : 1288 - 1299
  • [32] Long local searches for maximal bipartite subgraphs
    Kaul, Hemanshu
    West, Douglas B.
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2008, 22 (03) : 1138 - 1144
  • [33] Graph Meta Learning via Local Subgraphs
    Huang, Kexin
    Zitnik, Marinka
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [34] Detours
    Bursi, G
    CINEFORUM, 2005, 45 (01): : 76 - 77
  • [35] 'Detours'
    Crawford, C
    SOUTHERN HUMANITIES REVIEW, 1998, 32 (02): : 175 - 181
  • [36] Detours
    Bosman, Ellen
    LIBRARY JOURNAL, 2013, 138 (13) : 39 - 39
  • [37] Mining connected global and local dense subgraphs for bigdata
    Wu, Bo
    Shen, Haiying
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2016, 27 (07):
  • [38] The Strong Local Diagnosability of a Hypercube Network with Missing Edges
    Xie, Min
    Liang, Jiarong
    Xiong, Xi
    COMPLEXITY, 2018,
  • [39] Local heuristics and the emergence of spanning subgraphs in complex networks
    Stauffer, AO
    Barbosa, VC
    THEORETICAL COMPUTER SCIENCE, 2006, 355 (01) : 80 - 95
  • [40] Detours in the Past
    Meier, Mischa
    GYMNASIUM, 2010, 117 (04) : 416 - 418