Hypercube subgraphs with local detours

被引:0
|
作者
Hamburger, P [1 ]
Kostochka, AV
Sidorenko, A
机构
[1] Indiana Univ Purdue Univ, Dept Math Sci, Ft Wayne, IN 46805 USA
[2] Inst Math, Novosibirsk 630090, Russia
[3] NYU, Courant Inst Math Sci, New York, NY 10012 USA
关键词
hypercube; minimal detour; local detour;
D O I
10.1002/(SICI)1097-0118(199902)30:2<101::AID-JGT4>3.3.CO;2-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A minimal detour subgraph of the n-dimensional cube is a spanning subgraph G of Q(n) having the property that, for vertices x, y of Q(n), distances are related by d(G)(x, y) less than or equal to d(Qn)(x, y)+2. For a spanning subgraph G of Q(n) to be a local detour subgraph, we require only that the above inequality be satisfied whenever x and y are adjacent in Q(n). Let f(n) (respectively, f(l)(n)) denote the minimum number of edges in any minimal detour (respectively, local detour) subgraph of Q(n) (cf. Erdos et al. [1]). In this article, we find the asymptotics of fi(n) by showing that 3.2(n)(1 - O(n(-1/2))) < fi (n) < 3.2(n)(1 + o(1)). We also show that f(n) > 3.00001.2(n) Vbr n > no), thus eventually fi(n) < f(n), answering a question of II] in the negative. We find the order of magnitude of FI(n), the minimum possible maximum degree in a local detour subgraph of Q(n) : root 2n+0.25- 0.5 less than or equal to Fl (n) less than or equal to 1.5 root 2n - 1. (C) 1999 John Wiley & Sons, Inc.
引用
下载
收藏
页码:101 / 111
页数:11
相关论文
共 50 条
  • [21] Balanced caterpillars of maximum degree 3 and with hairs of arbitrary length are subgraphs of their optimal hypercube
    Monien, Burkhard
    Wechsung, Gerd
    JOURNAL OF GRAPH THEORY, 2018, 87 (04) : 561 - 580
  • [22] Local distributions and reconstruction of hypercube eigenfunctions
    Vasil'eva, A. Yu.
    PROBLEMS OF INFORMATION TRANSMISSION, 2013, 49 (01) : 32 - 39
  • [23] Local Triangle-Densest Subgraphs
    Samusevich, Raman
    Danisch, Maximilien
    Sozio, Mauro
    PROCEEDINGS OF THE 2016 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING ASONAM 2016, 2016, : 33 - 40
  • [24] Local density in graphs with forbidden subgraphs
    Keevash, P
    Sudakov, B
    COMBINATORICS PROBABILITY & COMPUTING, 2003, 12 (02): : 139 - 153
  • [25] Local distributions and reconstruction of hypercube eigenfunctions
    A. Yu. Vasil’eva
    Problems of Information Transmission, 2013, 49 : 32 - 39
  • [26] Upper bounds on the size of 4-and 6-cycle-free subgraphs of the hypercube
    Balogh, Jozsef
    Hu, Ping
    Lidicky, Bernard
    Liu, Hong
    EUROPEAN JOURNAL OF COMBINATORICS, 2014, 35 : 75 - 85
  • [27] Finding optimal subgraphs by local search
    Shimozono, S
    THEORETICAL COMPUTER SCIENCE, 1997, 172 (1-2) : 265 - 271
  • [28] A Local Algorithm for Finding Dense Subgraphs
    Andersen, Reid
    PROCEEDINGS OF THE NINETEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2008, : 1003 - 1009
  • [29] A Local Algorithm for Finding Dense Subgraphs
    Andersen, Reid
    ACM TRANSACTIONS ON ALGORITHMS, 2010, 6 (04)
  • [30] Properly colored subgraphs and rainbow subgraphs in edge-colorings with local constraints
    Alon, N
    Jiang, T
    Miller, Z
    Pritikin, D
    RANDOM STRUCTURES & ALGORITHMS, 2003, 23 (04) : 409 - 433