Bulky subgraphs of the hypercube

被引:1
|
作者
Kotlov, A [1 ]
机构
[1] CWI, NL-1098 SJ Amsterdam, Netherlands
关键词
D O I
10.1006/eujc.1999.0362
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Q(d) be the d-dimensional hypercube on 2(d) vertices, and let G be its induced subgraph. We say that G is simple-majority if \G\ > 2(d-1) and G is bulky if it is connected and meets every facet of Q(d). We show that every simple-majority G has a bulky subgraph. This was conjectured by Alon, Seymour and Thomas (A separator theorem for non-planar graphs, J. Am. Math. Soc. 3 (1990) 801-808). Further, we show that such a subgraph can be chosen on d + 1 vertices if d less than or equal to 5 and on fewer than 6 x 1.5(d-5) vertices if d greater than or equal to 6. (C) 2000 Academic Press.
引用
下载
收藏
页码:503 / 507
页数:5
相关论文
共 50 条
  • [1] Saturated Subgraphs of the Hypercube
    Johnson, J. Robert
    Pinto, Trevor
    COMBINATORICS PROBABILITY & COMPUTING, 2017, 26 (01): : 52 - 67
  • [2] Hypercube subgraphs with minimal detours
    Erdos, P
    Hamburger, P
    Pippert, RE
    Weakley, WD
    JOURNAL OF GRAPH THEORY, 1996, 23 (02) : 119 - 128
  • [3] Hypercube subgraphs with local detours
    Hamburger, P
    Kostochka, AV
    Sidorenko, A
    JOURNAL OF GRAPH THEORY, 1999, 30 (02) : 101 - 111
  • [4] Various parameters of subgraphs and supergraphs of the hypercube
    Northeastern University
    1600,
  • [5] On 2-Detour Subgraphs of the Hypercube
    József Balogh
    Alexandr Kostochka
    Graphs and Combinatorics, 2008, 24 : 265 - 272
  • [6] On 2-detour subgraphs of the hypercube
    Balogh, Jozsef
    Kostochka, Alexandr
    GRAPHS AND COMBINATORICS, 2008, 24 (04) : 265 - 272
  • [7] RADIUS AND DIAMETER OF RANDOM SUBGRAPHS OF THE HYPERCUBE
    KOSTOCHKA, AV
    SAPOZHENKO, AA
    WEBER, K
    RANDOM STRUCTURES & ALGORITHMS, 1993, 4 (02) : 215 - 229
  • [8] On even-cycle-free subgraphs of the hypercube
    Fueredi, Zoltan
    Ozkahya, Lale
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2011, 118 (06) : 1816 - 1819
  • [9] SUBGRAPHS OF A HYPERCUBE CONTAINING NO SMALL EVEN CYCLES
    CHUNG, FRK
    JOURNAL OF GRAPH THEORY, 1992, 16 (03) : 273 - 286
  • [10] On 14-Cycle-Free Subgraphs of the Hypercube
    Furedi, Zoltan
    Ozkahya, Lale
    COMBINATORICS PROBABILITY & COMPUTING, 2009, 18 (05): : 725 - 729