Bulky subgraphs of the hypercube

被引:1
|
作者
Kotlov, A [1 ]
机构
[1] CWI, NL-1098 SJ Amsterdam, Netherlands
关键词
D O I
10.1006/eujc.1999.0362
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Q(d) be the d-dimensional hypercube on 2(d) vertices, and let G be its induced subgraph. We say that G is simple-majority if \G\ > 2(d-1) and G is bulky if it is connected and meets every facet of Q(d). We show that every simple-majority G has a bulky subgraph. This was conjectured by Alon, Seymour and Thomas (A separator theorem for non-planar graphs, J. Am. Math. Soc. 3 (1990) 801-808). Further, we show that such a subgraph can be chosen on d + 1 vertices if d less than or equal to 5 and on fewer than 6 x 1.5(d-5) vertices if d greater than or equal to 6. (C) 2000 Academic Press.
引用
下载
收藏
页码:503 / 507
页数:5
相关论文
共 50 条
  • [21] Upper bounds on the size of 4-and 6-cycle-free subgraphs of the hypercube
    Balogh, Jozsef
    Hu, Ping
    Lidicky, Bernard
    Liu, Hong
    EUROPEAN JOURNAL OF COMBINATORICS, 2014, 35 : 75 - 85
  • [22] Embedding hierarchical hypercube networks into the hypercube
    Hamdi, M
    Song, SW
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 1997, 8 (09) : 897 - 902
  • [23] On the Folded Hypercube and Bi-folded Hypercube
    Xu, Ying
    Meng, Jixiang
    ARS COMBINATORIA, 2009, 92 : 3 - 9
  • [24] Induced Subgraphs of Induced Subgraphs of Large Chromatic Number
    António Girão
    Freddie Illingworth
    Emil Powierski
    Michael Savery
    Alex Scott
    Youri Tamitegama
    Jane Tan
    Combinatorica, 2024, 44 : 37 - 62
  • [25] Induced Subgraphs of Induced Subgraphs of Large Chromatic Number
    Girao, Antonio
    Illingworth, Freddie
    Powierski, Emil
    Savery, Michael
    Scott, Alex
    Tamitegama, Youri
    Tan, Jane
    COMBINATORICA, 2024, 44 (01) : 37 - 62
  • [26] PERFORMABILITY OF THE HYPERCUBE
    ISLAM, SMR
    AMMAR, HH
    COMPUTING AND INFORMATION, 1989, : 169 - 176
  • [27] A HYPERCUBE PROBLEM
    JOHNSON, KA
    FIBONACCI QUARTERLY, 1990, 28 (02): : 121 - 128
  • [28] Rainbows in the Hypercube
    Maria Axenovich
    Heiko Harborth
    Arnfried Kemnitz
    Meinhard Möller
    Ingo Schiermeyer
    Graphs and Combinatorics, 2007, 23 : 123 - 133
  • [29] Efficient Enumeration of Subgraphs and Induced Subgraphs with Bounded Girth
    Kurita, Kazuhiro
    Wasa, Kunihiro
    Conte, Alessio
    Uno, Takeaki
    Arimura, Hiroki
    COMBINATORIAL ALGORITHMS, IWOCA 2018, 2018, 10979 : 201 - 213
  • [30] The Fibonacci hypercube
    Rispoli, Fred J.
    Cosares, Steven
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2008, 40 : 187 - 196