Attaining high mid-temperature performance in (Bi,Sb)2Te3 thermoelectric materials via synergistic optimization

被引:130
|
作者
Xu, Zhaojun [1 ]
Wu, Haijun [2 ,3 ,4 ]
Zhu, Tiejun [1 ]
Fu, Chenguang [1 ]
Liu, Xiaohua [1 ]
Hu, Lipeng [1 ]
He, Jian [5 ]
He, Jiaqing [2 ,3 ]
Zhao, Xinbing [1 ]
机构
[1] Zhejiang Univ, Sch Mat Sci & Engn, State Key Lab Silicon Mat, 38 Zheda Rd, Hangzhou 310027, Zhejiang, Peoples R China
[2] South Univ Sci & Technol China, Dept Phys, Shenzhen, Peoples R China
[3] South Univ Sci & Technol China, Shenzhen Key Lab Thermoelect Mat, Shenzhen, Peoples R China
[4] Natl Univ Singapore, Dept Mat Sci & Engn, Singapore, Singapore
[5] Clemson Univ, Dept Phys & Astron, Clemson, SC 29634 USA
基金
美国国家科学基金会;
关键词
OPTICAL-PROPERTIES; ANTISITE DEFECTS; POWER-GENERATION; SOLID-SOLUTIONS; FIGURE; MERIT; ENHANCEMENT; BI2TE3; ALLOYS; HEAT;
D O I
10.1038/am.2016.134
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
For decades, zone-melted Bi2Te3-based alloys have been the most widely used thermoelectric materials with an optimal operation regime near room temperature. However, the abundant waste heat in the mid-temperature range poses a challenge; namely, how and to what extent the service temperature of Bi2Te3-based alloys can be upshifted to the mid-temperature regime. We report herein a synergistic optimization procedure for Indium doping and hot deformation that combines intrinsic point defect engineering, band structure engineering and multiscale microstructuring. Indium doping modulated the intrinsic point defects, broadened the band gap and thus suppressed the detrimental bipolar effect in the mid-temperature regime; in addition, hot deformation treatment rendered a multiscale microstructure favorable for phonon scattering and the donor-like effect helped optimize the carrier concentration. As a result, a peak value of zT of similar to 1.4 was attained at 500 K, with a state-of-the-art average zT(av) of similar to 1.3 between 400 and 600 K in Bi0.3Sb1.625In0.075Te3. These results demonstrate the efficacy of the multiple synergies that can also be applied to optimize other thermoelectric materials.
引用
收藏
页码:e302 / e302
页数:9
相关论文
共 50 条
  • [21] Microstructure of thermoelectric (Bi0.15Sb0.85)2Te3 film
    Koksal Yildiz
    Unal Akgul
    Hartmut S. Leipner
    Yusuf Atici
    Applied Physics A, 2014, 117 : 1387 - 1392
  • [22] Microstructure of thermoelectric (Bi0.15Sb0.85)2Te3 film
    Yildiz, Koksal
    Akgul, Unal
    Leipner, Hartmut S.
    Atici, Yusuf
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2014, 117 (03): : 1387 - 1392
  • [23] Thermoelectric performance of p-type (Bi,Sb)2Te3 incorporating amorphous Sb2S3 nanospheres
    Bao, Deyu
    Sun, Qiang
    Huang, Linsen
    Chen, Jie
    Tang, Jun
    Zhou, Dali
    Hong, Min
    Yang, Lei
    Chen, Zhi-Gang
    CHEMICAL ENGINEERING JOURNAL, 2022, 430
  • [24] Aqueous chemical synthesis of nanoscale Bi2(Te,Se)3 and (Bi,Sb)2Te3 thermoelectric compounds
    Xu, Yongbin
    Ren, Zhongming
    Ren, Weili
    Deng, Kang
    Zhong, Yunbo
    MATERIALS LETTERS, 2008, 62 (4-5) : 763 - 766
  • [25] Room temperature Bi2Te3-based thermoelectric materials with high performance
    Bano, Sahiba
    Kumar, Ashish
    Govind, Bal
    Khan, Abdul Hanan
    Ashok, Anuradha
    Misra, D. K.
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2020, 31 (11) : 8607 - 8617
  • [26] Room temperature Bi2Te3-based thermoelectric materials with high performance
    Sahiba Bano
    Ashish Kumar
    Bal Govind
    Abdul Hanan Khan
    Anuradha Ashok
    D. K. Misra
    Journal of Materials Science: Materials in Electronics, 2020, 31 : 8607 - 8617
  • [27] Unraveling electronic origins for boosting thermoelectric performance of p-type (Bi,Sb)2Te3
    Cheng, Rui
    Ge, Haoran
    Huang, Shengpu
    Xie, Sen
    Tong, Qiwei
    Sang, Hao
    Yan, Fan
    Zhu, Liangyu
    Wang, Rui
    Liu, Yong
    Hong, Min
    Uher, Ctirad
    Zhang, Qingjie
    Liu, Wei
    Tang, Xinfeng
    SCIENCE ADVANCES, 2024, 10 (21):
  • [28] Microstructure evolution and thermoelectric properties of Te-poor and Te-rich (Bi,Sb)2Te3 prepared via solidification
    Femi, Olu Emmanuel
    Ravishankar, N.
    Chattopadhyay, K.
    JOURNAL OF MATERIALS SCIENCE, 2016, 51 (15) : 7254 - 7265
  • [29] High thermoelectric properties of (Sb, Bi)2Te3 nanowire arrays by tilt-structure engineering
    Tan, Ming
    Hao, Yanming
    Deng, Yuan
    Chen, Jingyi
    APPLIED SURFACE SCIENCE, 2018, 443 : 11 - 17
  • [30] Microstructure evolution and thermoelectric properties of Te-poor and Te-rich (Bi,Sb)2Te3 prepared via solidification
    Olu Emmanuel Femi
    N. Ravishankar
    K. Chattopadhyay
    Journal of Materials Science, 2016, 51 : 7254 - 7265