Room temperature Bi2Te3-based thermoelectric materials with high performance

被引:0
|
作者
Sahiba Bano
Ashish Kumar
Bal Govind
Abdul Hanan Khan
Anuradha Ashok
D. K. Misra
机构
[1] CSIR-National Physical Laboratory,
[2] AcSIR,undefined
[3] Academy of Scientific & Innovative Research,undefined
[4] Department of Physics,undefined
[5] PSG College of Technology NRIIC,undefined
[6] PSG Institute of Advanced Studies Peelamedu,undefined
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Several off-stoichiometric compositions Bi0.5Sb1.5+xTe3+δ (x = 0.2; δ = 0, 0.12, 0.14) were deliberately synthesized to produce in-situ composites based on compositional engineering approach. The structural characterization of these materials employing XRD, SEM, and HR-TEM reveals the formation of in-situ-composites containing Bi0.5Sb1.5Te3 as matrix phase and minor phases of either Sb rich or Te rich in different compositions. Thermoelectric properties of these Bi0.5Sb1.5+xTe3+δ (x = 0.2; δ = 0, 0.12, 0.14) composites were studied in a wide range of temperatures extending from room temperature to 500 K. The electronic transport of these composites exhibits p-type semiconducting materials. The lowest thermal conductivity of ~ 0.69 W/m K @310 K was observed for Bi0.5Sb1.7Te3.12 composite, which was noted to be 14% reduced thermal conductivity when compared with that of the state-of-the-art Bi0.5Sb1.5Te3 (κ=\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$=$$\end{document} 0.82 W/m K) material. In addition to this, an enhanced power factor was also observed in Bi0.5Sb1.7Te3.12 which is primarily due to increased electrical conductivity of these materials. This enhanced power factor of the composition of Bi0.5Sb1.7Te3.12 coupled with reduced thermal conductivity yields to high ZT ~ 1.13 at nearly room temperature, making these materials viable for large scale applications.
引用
收藏
页码:8607 / 8617
页数:10
相关论文
共 50 条
  • [1] Room temperature Bi2Te3-based thermoelectric materials with high performance
    Bano, Sahiba
    Kumar, Ashish
    Govind, Bal
    Khan, Abdul Hanan
    Ashok, Anuradha
    Misra, D. K.
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2020, 31 (11) : 8607 - 8617
  • [2] Hygrothermal Stability of Bi2Te3-based Thermoelectric Materials
    Xiao Yani
    Lyu Jianan
    Li Zhenming
    Liu Mingyang
    Liu Wei
    Ren Zhigang
    Liu Hongjing
    Yang Dongwang
    Yan Yonggao
    JOURNAL OF INORGANIC MATERIALS, 2023, 38 (07) : 800 - +
  • [3] Progress in Bi2Te3-Based Superlattice Thermoelectric Materials
    Bulman, Gary E.
    Stokes, C. David
    Barletta, Philip T.
    Venkatasubramanian, Rama
    ENERGY HARVESTING AND STORAGE: MATERIALS, DEVICES, AND APPLICATIONS II, 2011, 8035
  • [4] Fundamental and progress of Bi2Te3-based thermoelectric materials
    Hong, Min
    Chen, Zhi-Gang
    Ziou, Jin
    CHINESE PHYSICS B, 2018, 27 (04)
  • [5] Fundamental and progress of Bi2Te3-based thermoelectric materials
    洪敏
    陈志刚
    邹进
    ChinesePhysicsB, 2018, 27 (04) : 54 - 78
  • [6] Phonon Engineering in Bi2Te3-Based Thermoelectric Materials
    Liu Z.
    Guan X.
    Li Z.
    Ma N.
    Ma J.
    Ba Q.
    Xia A.
    Jin C.
    Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 2024, 52 (01): : 203 - 217
  • [7] High-Performance Wearable Bi2Te3-Based Thermoelectric Generator
    Xing, Yubing
    Tang, Kechen
    Wang, Jiang
    Hu, Kai
    Xiao, Yani
    Lyu, Jianan
    Li, Junhao
    Liu, Yutian
    Zhou, Peng
    Yan, Yonggao
    Yang, Dongwang
    APPLIED SCIENCES-BASEL, 2023, 13 (10):
  • [8] High performance functionally graded and segmented Bi2Te3-based materials for thermoelectric power generation
    V. L. Kuznetsov
    L. A. Kuznetsova
    A. E. Kaliazin
    D. M. Rowe
    Journal of Materials Science, 2002, 37 : 2893 - 2897
  • [9] Realizing record high performance in n-type Bi2Te3-based thermoelectric materials
    Zhu, Bin
    Liu, Xixi
    Wang, Qi
    Qiu, Yang
    Shu, Zhong
    Guo, Zuteng
    Tong, Yao
    Cui, Juan
    Gu, Meng
    He, Jiaqing
    ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (07) : 2106 - 2114
  • [10] High performance properties of sintered Bi2Te3-based thermoelectric material
    Sugihara, S
    Tomita, S
    Asakawa, K
    Suda, H
    PROCEEDINGS ICT '96 - FIFTEENTH INTERNATIONAL CONFERENCE ON THERMOELECTRICS, 1996, : 46 - 51