Attaining high mid-temperature performance in (Bi,Sb)2Te3 thermoelectric materials via synergistic optimization

被引:130
|
作者
Xu, Zhaojun [1 ]
Wu, Haijun [2 ,3 ,4 ]
Zhu, Tiejun [1 ]
Fu, Chenguang [1 ]
Liu, Xiaohua [1 ]
Hu, Lipeng [1 ]
He, Jian [5 ]
He, Jiaqing [2 ,3 ]
Zhao, Xinbing [1 ]
机构
[1] Zhejiang Univ, Sch Mat Sci & Engn, State Key Lab Silicon Mat, 38 Zheda Rd, Hangzhou 310027, Zhejiang, Peoples R China
[2] South Univ Sci & Technol China, Dept Phys, Shenzhen, Peoples R China
[3] South Univ Sci & Technol China, Shenzhen Key Lab Thermoelect Mat, Shenzhen, Peoples R China
[4] Natl Univ Singapore, Dept Mat Sci & Engn, Singapore, Singapore
[5] Clemson Univ, Dept Phys & Astron, Clemson, SC 29634 USA
基金
美国国家科学基金会;
关键词
OPTICAL-PROPERTIES; ANTISITE DEFECTS; POWER-GENERATION; SOLID-SOLUTIONS; FIGURE; MERIT; ENHANCEMENT; BI2TE3; ALLOYS; HEAT;
D O I
10.1038/am.2016.134
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
For decades, zone-melted Bi2Te3-based alloys have been the most widely used thermoelectric materials with an optimal operation regime near room temperature. However, the abundant waste heat in the mid-temperature range poses a challenge; namely, how and to what extent the service temperature of Bi2Te3-based alloys can be upshifted to the mid-temperature regime. We report herein a synergistic optimization procedure for Indium doping and hot deformation that combines intrinsic point defect engineering, band structure engineering and multiscale microstructuring. Indium doping modulated the intrinsic point defects, broadened the band gap and thus suppressed the detrimental bipolar effect in the mid-temperature regime; in addition, hot deformation treatment rendered a multiscale microstructure favorable for phonon scattering and the donor-like effect helped optimize the carrier concentration. As a result, a peak value of zT of similar to 1.4 was attained at 500 K, with a state-of-the-art average zT(av) of similar to 1.3 between 400 and 600 K in Bi0.3Sb1.625In0.075Te3. These results demonstrate the efficacy of the multiple synergies that can also be applied to optimize other thermoelectric materials.
引用
收藏
页码:e302 / e302
页数:9
相关论文
共 50 条
  • [31] Melt-Centrifuged (Bi,Sb)2Te3: Engineering Microstructure toward High Thermoelectric Efficiency
    Pan, Yu
    Aydemir, Umut
    Grovogui, Jann A.
    Witting, Ian T.
    Hanus, Riley
    Xu, Yaobin
    Wu, Jinsong
    Wu, Chao-Feng
    Sun, Fu-Hua
    Zhuang, Hua-Lu
    Dong, Jin-Feng
    Li, Jing-Feng
    Dravid, Vinayak P.
    Snyder, G. Jeffrey
    ADVANCED MATERIALS, 2018, 30 (34)
  • [32] Mid-temperature thermoelectric performance of zone-melted Sb2(Te,Se)3 alloys near phase transition boundary
    Li, Beibei
    Zhai, Renshuang
    Fang, Teng
    Xia, Kaiyang
    Wu, Yongjun
    Zhu, Tiejun
    JOURNAL OF MATERIOMICS, 2019, 5 (04) : 590 - 596
  • [33] Exceptional thermoelectric and mechanical performance in (Bi, Sb)2Te3 matrix facilitated by AgInSe2 alloying
    Li, Ruiheng
    Ou, Wenxin
    Zhu, Jianglong
    Deng, Qian
    Tan, Xiaobo
    Zhao, Qi
    Lu, Tianbo
    Gao, Shaojingya
    Ma, Huangshui
    Wu, Hao
    Sun, Qiang
    Ang, Ran
    CHEMICAL ENGINEERING JOURNAL, 2024, 497
  • [34] High ZT in p-type thermoelectric (Bi,Sb)2Te3 with built-in nanopores
    Zhuang, Hua-Lu
    Hu, Haihua
    Pei, Jun
    Su, Bin
    Li, Jing-Wei
    Jiang, Yilin
    Han, Zhanran
    Li, Jing-Feng
    ENERGY & ENVIRONMENTAL SCIENCE, 2022, 15 (05) : 2039 - 2048
  • [35] Highly efficient n-(Bi, Sb)2Te3 thermoelectric materials for temperatures below 200 K
    Kutasov, VA
    Luk'yanova, LN
    Konstantinov, PP
    SEMICONDUCTORS, 2000, 34 (04) : 376 - 380
  • [36] Correlating thermoelectric (Bi,Sb)2Te3 film electric transport properties with microstructure
    Siegal, M. P.
    Podkaminer, J.
    Lima-Sharma, A. L.
    Sharma, P. A.
    Medlin, D. L.
    JOURNAL OF APPLIED PHYSICS, 2019, 125 (17)
  • [37] Highly efficient n-(Bi, Sb)2Te3 thermoelectric materials for temperatures below 200 K
    V. A. Kutasov
    L. N. Luk’yanova
    P. P. Konstantinov
    Semiconductors, 2000, 34 : 376 - 380
  • [38] Evolution of thermoelectric performance for (Bi,Sb)2Te3 alloys from cutting waste powders to bulks with high figure of merit
    Fan, Xi'an
    Cai, Xin Zhi
    Han, Xue Wu
    Zhang, Cheng Cheng
    Rong, Zhen Zhou
    Yang, Fan
    Li, Guang Qiang
    JOURNAL OF SOLID STATE CHEMISTRY, 2016, 233 : 186 - 193
  • [39] Thermoelectric Cu-doped (Bi,Sb)2Te3: Performance enhancement and stability against high electric current pulse
    Zhuang, Hua-Lu
    Pan, Yu
    Sun, Fu-Hua
    Dong, Jinfeng
    Pei, Jun
    Asfandiyar
    Cai, Bowen
    Hu, Haihua
    Tang, Huaichao
    Li, Jing-Feng
    NANO ENERGY, 2019, 60 : 857 - 865
  • [40] Diffusion of nickel and tin in p-type (Bi,Sb)2Te3 and n-type Bi2(Te,Se)3 thermoelectric materials
    Lan, Y. C.
    Wang, D. Z.
    Chen, G.
    Ren, Z. F.
    APPLIED PHYSICS LETTERS, 2008, 92 (10)