CLASSIFICATION OF MULTITEMPORAL SAR IMAGES USING CONVOLUTIONAL NEURAL NETWORKS AND MARKOV RANDOM FIELDS

被引:0
|
作者
Danilla, Carolyne [1 ]
Persello, Claudio [1 ]
Tolpekin, Valentyn [1 ]
Bergado, John Ray [1 ]
机构
[1] Univ Twente, ITC Fac, Dept Earth Observat Sci, Enschede, Netherlands
关键词
Convolutional neural networks; synthetic aperture radar; image classification; speckle filtering; Sentinel-1;
D O I
暂无
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Classification of Synthetic Aperture Radar (SAR) images is a complex task because of the presence of speckle, which affects images in a way similar to a strong noise. In this study, we investigate the use of Convolutional Neural Networks (CNNs) which can effectively learn a bank of spatial filters to simultaneously 1) reduce speckle noise, and 2) extract spatial-contextual features to characterize texture and scattering mechanism. Moreover, we combine CNN with Markov Random Fields (MRFs) for post-classification label smoothing to further reduce the effect of speckle on the landcover map and to improve classification accuracy. We applied the proposed classification system to the analysis of a multitemporal series of Sentinel-1 images for mapping agricultural fields in Flevoland, The Netherlands. Experimental results confirm the effectiveness of the investigated approach, which outperforms standard methods.
引用
收藏
页码:2231 / 2234
页数:4
相关论文
共 50 条
  • [31] Classification of Images of Childhood Pneumonia using Convolutional Neural Networks
    Saraiva, A. A.
    Fonseca Ferreira, N. M.
    de Sousa, Luciano Lopes
    Costa, Nator Junior C.
    Moura Sousa, Jose Vigno
    Santos, D. B. S.
    Valente, Antonio
    Soares, Salviano
    BIOIMAGING: PROCEEDINGS OF THE 12TH INTERNATIONAL JOINT CONFERENCE ON BIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES, VOL 2, 2019, : 112 - 119
  • [32] Food Classification from Images Using Convolutional Neural Networks
    Attokaren, David J.
    Fernandes, Ian G.
    Sriram, A.
    Murthy, Y. V. Srinivasa
    Koolagudi, Shashidhar G.
    TENCON 2017 - 2017 IEEE REGION 10 CONFERENCE, 2017, : 2801 - 2806
  • [33] Polarimetric SAR Image Classification Using Deep Convolutional Neural Networks
    Zhou, Yu
    Wang, Haipeng
    Xu, Feng
    Jin, Ya-Qiu
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (12) : 1935 - 1939
  • [34] CLASSIFICATION OF MULTIMISSION SAR IMAGES BASED ON PROBABILISTIC GRAPHICAL MODELS AND CONVOLUTIONAL NEURAL NETWORKS
    Pastorino, Martina
    Moser, Gabriele
    Serpico, Sebastiano B.
    Zerubia, Josiane
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 1420 - 1423
  • [35] Unsupervised classification of radar images using hidden Markov chains and hidden Markov random fields
    Fjortoft, R
    Delignon, Y
    Pieczynski, W
    Sigelle, M
    Tupin, F
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2003, 41 (03): : 675 - 686
  • [36] Dual-Channel Convolutional Neural Network for Change Detection of Multitemporal SAR Images
    Liu, Tao
    Li, Ying
    Xu, Longhao
    2016 INTERNATIONAL CONFERENCE ON ORANGE TECHNOLOGIES (ICOT), 2018, : 60 - 63
  • [37] Segmentation of sonar imagery using convolutional neural networks and Markov random field
    Peng Liu
    Yan Song
    Multidimensional Systems and Signal Processing, 2020, 31 : 21 - 47
  • [38] Segmentation of sonar imagery using convolutional neural networks and Markov random field
    Liu, Peng
    Song, Yan
    MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 2020, 31 (01) : 21 - 47
  • [39] Classification of Low Resolution Astronomical Images using Convolutional Neural Networks
    Patil, Jyoti S.
    Pawase, Ravindra S.
    Dandawate, Y. H.
    2017 2ND IEEE INTERNATIONAL CONFERENCE ON RECENT TRENDS IN ELECTRONICS, INFORMATION & COMMUNICATION TECHNOLOGY (RTEICT), 2017, : 1168 - 1172
  • [40] Classification of Sleep Stage with Biosignal Images Using Convolutional Neural Networks
    Joe, Moon-Jeung
    Pyo, Seung-Chan
    APPLIED SCIENCES-BASEL, 2022, 12 (06):