Classification of Low Resolution Astronomical Images using Convolutional Neural Networks

被引:0
|
作者
Patil, Jyoti S. [1 ]
Pawase, Ravindra S. [2 ]
Dandawate, Y. H. [1 ]
机构
[1] VIIT, Dept Elect & Telecommun Engn, Pune, Maharashtra, India
[2] VIIT, Dept Engn & Appl Sci, Pune, Maharashtra, India
关键词
image classification; machine learning; convolutional neural networks; deep learning;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Currently deep machine learningtechniques are widely adopted by computer vision and signal processing communities. Deep learning, in particular, the Convolutional Neural Networks (CNN), are the most impressive classifiers widely used for image classification in recent years. CNN model allows the machine to learn automatically about the complex image features from its representation, minimizing the need of human experts in feature extraction. Such a hierarchical representation learning of the images makes CNN a more promising model for classification of different kinds of images as compared to the traditional machine learning models. In this paper, one such successful implementation of CNN is performed for classifying low resolution radio astronomical images containing objects like 'Radio Halos and Relics', and several other ` Point Radio Sources'. For such images, low resolution makes feature extraction a difficult task. Hence, a CNN based classification model proved more efficient in this casegiving a classification accuracy of 88%.
引用
收藏
页码:1168 / 1172
页数:5
相关论文
共 50 条
  • [1] MaxiMask: Identifying Contaminants in Astronomical Images using Convolutional Neural Networks
    Paillassa, Maxime
    Bertin, Emmanuel
    Bouy, Herve
    [J]. ASTRONOMICAL DATA ANALYSIS SOFTWARE AND SYSTEMS XXVIII, 2019, 523 : 99 - 102
  • [2] Using convolutional neural networks to identify gravitational lenses in astronomical images
    Davies, Andrew
    Serjeant, Stephen
    Bromley, Jane M.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 487 (04) : 5263 - 5271
  • [3] SCENE CLASSIFICATION OF HIGH RESOLUTION REMOTE SENSING IMAGES USING CONVOLUTIONAL NEURAL NETWORKS
    Cheng, Gong
    Ma, Chengcheng
    Zhou, Peicheng
    Yao, Xiwen
    Han, Junwei
    [J]. 2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 767 - 770
  • [4] Super-Resolution on Degraded Low-Resolution Images Using Convolutional Neural Networks
    Albluwi, Fatma
    Krylov, Vladimir A.
    Dahyot, Rozenn
    [J]. 2019 27TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2019,
  • [5] Super Resolution for Noisy Images Using Convolutional Neural Networks
    Mushtaq, Zaid Bin
    Nasti, Shoaib Mohd
    Verma, Chaman
    Raboca, Maria Simona
    Kumar, Neerendra
    Nasti, Samiah Jan
    [J]. MATHEMATICS, 2022, 10 (05)
  • [6] Defect classification in shearography images using convolutional neural networks
    Frohlich, Herberth Birck
    Fantin, Analucia Vieira
    Fonseca de Oliveira, Bernardo Cassimiro
    Willemann, Daniel Pedro
    Iervolino, Lucas Arrigoni
    Benedet, Mauro Eduardo
    Goncalves, Armando Albertazzi, Jr.
    [J]. 2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018,
  • [7] Using convolutional neural networks for classification of malware represented as images
    Daniel Gibert
    Carles Mateu
    Jordi Planes
    Ramon Vicens
    [J]. Journal of Computer Virology and Hacking Techniques, 2019, 15 : 15 - 28
  • [8] Human Classification in Aerial Images Using Convolutional Neural Networks
    Akshatha, K. R.
    Karunakar, A. K.
    Shenoy, B. Satish
    [J]. MACHINE LEARNING AND AUTONOMOUS SYSTEMS, 2022, 269 : 537 - 549
  • [9] Using convolutional neural networks for classification of malware represented as images
    Gibert, Daniel
    Mateu, Carles
    Planes, Jordi
    Vicens, Ramon
    [J]. JOURNAL OF COMPUTER VIROLOGY AND HACKING TECHNIQUES, 2019, 15 (01) : 15 - 28
  • [10] Classification of Fashion Article Images using Convolutional Neural Networks
    Bhatnagar, Shobhit
    Ghosal, Deepanway
    Kolekar, Maheshkumar H.
    [J]. 2017 FOURTH INTERNATIONAL CONFERENCE ON IMAGE INFORMATION PROCESSING (ICIIP), 2017, : 357 - 362