SCENE CLASSIFICATION OF HIGH RESOLUTION REMOTE SENSING IMAGES USING CONVOLUTIONAL NEURAL NETWORKS

被引:0
|
作者
Cheng, Gong [1 ]
Ma, Chengcheng [1 ]
Zhou, Peicheng [1 ]
Yao, Xiwen [1 ]
Han, Junwei [1 ]
机构
[1] Northwestern Polytech Univ, Sch Automat, Xian 710072, Peoples R China
基金
美国国家科学基金会;
关键词
Scene classification; convolutional neural network (CNN); deep learning; feature extraction; remote sensing images; GEOSPATIAL OBJECT DETECTION; VISUAL SALIENCY;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Scene classification of high resolution remote sensing images plays an important role for a wide range of applications. While significant efforts have been made in developing various methods for scene classification, most of them are based on handcrafted or shallow learning-based features. In this paper, we investigate the use of deep convolutional neural network (CNN) for scene classification. To this end, we first adopt two simple and effective strategies to extract CNN features: (1) using pre-trained CNN models as universal feature extractors, and (2) domain-specifically fine-tuning pretrained CNN models on our scene classification dataset. Then, scene classification is carried out by using simple classifiers such as linear support vector machine (SVM). In our work, three off-the-shelf CNN models including AlexNet [1], VGGNet [2], and GoogleNet [3] are investigated. Comprehensive evaluations on a publicly available 21 classes land use dataset and comparisons with several state-of-the-art approaches demonstrate that deep CNN features are effective for scene classification of high resolution remote sensing images.
引用
下载
收藏
页码:767 / 770
页数:4
相关论文
共 50 条
  • [1] Sparse representation with spike convolutional neural networks for scene classification of remote sensing images of high resolution
    Zhang Z.-Y.
    Cao W.-H.
    Zhu R.
    Hu W.-K.
    Wu M.
    Kongzhi yu Juece/Control and Decision, 2022, 37 (09): : 2305 - 2313
  • [2] Scene Classification of Remote Sensing Images Based on Integrated Convolutional Neural Networks
    Zhang Xiaonan
    Zhong Xing
    Zhu Ruifei
    Gao Fang
    Zhang Zuoxing
    Bao Songze
    Li Zhuqiang
    ACTA OPTICA SINICA, 2018, 38 (11)
  • [3] Transferring Deep Convolutional Neural Networks for the Scene Classification of High-Resolution Remote Sensing Imagery
    Hu, Fan
    Xia, Gui-Song
    Hu, Jingwen
    Zhang, Liangpei
    REMOTE SENSING, 2015, 7 (11) : 14680 - 14707
  • [4] Siamese Convolutional Neural Networks for Remote Sensing Scene Classification
    Liu, Xuning
    Zhou, Yong
    Zhao, Jiaqi
    Yao, Rui
    Liu, Bing
    Zheng, Yi
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2019, 16 (08) : 1200 - 1204
  • [5] High-Resolution Remote Sensing Image Scene Classification by Merging Multilevel Features of Convolutional Neural Networks
    Zhang, Xiaoxia
    Guo, Yong
    Zhang, Xia
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2021, 49 (06) : 1379 - 1391
  • [6] High-Resolution Remote Sensing Image Scene Classification by Merging Multilevel Features of Convolutional Neural Networks
    Xiaoxia Zhang
    Yong Guo
    Xia Zhang
    Journal of the Indian Society of Remote Sensing, 2021, 49 : 1379 - 1391
  • [7] Remote Sensing Image Scene Classification Based on Convolutional Neural Networks
    Liu, Yumei
    Informatica (Slovenia), 2025, 49 (09): : 45 - 54
  • [8] Classification of Hybrid Multiscaled Remote Sensing Scene Using Pretrained Convolutional Neural Networks
    Alegavi, Sujata
    Sedamkar, Raghvendra
    COMPUTATIONAL VISION AND BIO-INSPIRED COMPUTING, 2020, 1108 : 148 - 160
  • [9] Scene classification of high-resolution remote sensing imagery based on deep transfer deformable convolutional neural networks
    Shi H.
    Xu Y.
    Teng W.
    Wang N.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2021, 50 (05): : 652 - 663
  • [10] Semisupervised Scene Classification for Remote Sensing Images: A Method Based on Convolutional Neural Networks and Ensemble Learning
    Dai, Xueyuan
    Wu, Xiaofeng
    Wang, Bin
    Zhang, Liming
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2019, 16 (06) : 869 - 873