Using convolutional neural networks to identify gravitational lenses in astronomical images

被引:35
|
作者
Davies, Andrew [1 ]
Serjeant, Stephen [1 ]
Bromley, Jane M. [2 ]
机构
[1] Open Univ, Sch Phys Sci, Walton Hall, Milton Keynes MK7 6AA, Bucks, England
[2] Open Univ, Sch Comp & Commun, Walton Hall, Milton Keynes MK7 6AA, Bucks, England
基金
英国科学技术设施理事会;
关键词
gravitational lensing: strong; ALL-SKY SURVEY; AUTOMATIC DETECTION; SPACE WARPS; ACS SURVEY; GALAXY; CANDIDATES; DISCOVERY; SELECTION; I;
D O I
10.1093/mnras/stz1288
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The Euclid telescope, due for launch in 2021, will perform an imaging and slitless spectroscopy survey over half the sky, to map baryon wiggles and weak lensing. During the survey, Euclid is expected to resolve 100000 strong gravitational lens systems. This is ideal to find rare lens configurations, provided they can be identified reliably and on a reasonable time-scale. For this reason, we have developed a convolutional neural network (CNN) that can be used to identify images containing lensing systems. CNNs have already been used for image and digit classification as well as being used in astronomy for star-galaxy classification. Here, our CNN is trained and tested on Euclid-like and KiDS (Kilo-Degree Survey)-like simulations from the Euclid Strong Lensing Group, successfully classifying 77percent of lenses, with an area under the ROC curve of up to 0.96. Our CNN also attempts to classify the lenses in COSMOS Hubble Space Telescope F814W-band images. After convolution to the Euclid resolution, we find we can recover most systems that are identifiable by eye. The python code is available on Github.
引用
收藏
页码:5263 / 5271
页数:9
相关论文
共 50 条
  • [1] Classification of Low Resolution Astronomical Images using Convolutional Neural Networks
    Patil, Jyoti S.
    Pawase, Ravindra S.
    Dandawate, Y. H.
    [J]. 2017 2ND IEEE INTERNATIONAL CONFERENCE ON RECENT TRENDS IN ELECTRONICS, INFORMATION & COMMUNICATION TECHNOLOGY (RTEICT), 2017, : 1168 - 1172
  • [2] MaxiMask: Identifying Contaminants in Astronomical Images using Convolutional Neural Networks
    Paillassa, Maxime
    Bertin, Emmanuel
    Bouy, Herve
    [J]. ASTRONOMICAL DATA ANALYSIS SOFTWARE AND SYSTEMS XXVIII, 2019, 523 : 99 - 102
  • [3] Fast automated analysis of strong gravitational lenses with convolutional neural networks
    Yashar D. Hezaveh
    Laurence Perreault Levasseur
    Philip J. Marshall
    [J]. Nature, 2017, 548 : 555 - 557
  • [4] Fast automated analysis of strong gravitational lenses with convolutional neural networks
    Hezaveh, Yashar D.
    Levasseur, Laurence Perreault
    Marshall, Philip J.
    [J]. NATURE, 2017, 548 (7669) : 555 - +
  • [5] Testing convolutional neural networks for finding strong gravitational lenses in KiDS
    Petrillo, C. E.
    Tortora, C.
    Chatterjee, S.
    Vernardos, G.
    Koopmans, L. V. E.
    Kleijn, G. Verdoes
    Napolitano, N. R.
    Covone, G.
    Kelvin, L. S.
    Hopkins, A. M.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 482 (01) : 807 - 820
  • [6] Lenses In VoicE (LIVE): searching for strong gravitational lenses in the VOICE@VST survey using convolutional neural networks
    Gentile, Fabrizio
    Tortora, Crescenzo
    Covone, Giovanni
    Koopmans, Leon V. E.
    Spiniello, Chiara
    Fan, Zuhui
    Li, Rui
    Liu, Dezi
    Napolitano, Nicola R.
    Vaccari, Mattia
    Fu, Liping
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2022, 510 (01) : 500 - 514
  • [7] Finding strong gravitational lenses in the Kilo Degree Survey with Convolutional Neural Networks
    Petrillo, C. E.
    Tortora, C.
    Chatterjee, S.
    Vernardos, G.
    Koopmans, L. V. E.
    Kleijn, G. Verdoes
    Napolitano, N. R.
    Covone, G.
    Schneider, P.
    Grado, A.
    McFarland, J.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 472 (01) : 1129 - 1150
  • [8] MAXIMASK and MAXITRACK: Two new tools for identifying contaminants in astronomical images using convolutional neural networks
    Paillassa, M.
    Bertin, E.
    Bouy, H.
    [J]. ASTRONOMY & ASTROPHYSICS, 2020, 634
  • [9] An Approach to Detect Cavities in X-Ray Astronomical Images Using Granular Convolutional Neural Networks
    Ma, Zhixian
    Zhu, Jie
    Li, Weitian
    Xu, Haiguang
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2017, E100D (10) : 2578 - 2586
  • [10] PataNET: A Convolutional Neural Networks to Identify Plant from Leaf Images
    Islam, Md. Majedul
    Arfin, Md. Hafizur Rahman
    Rabby, A. K. M. Shahahriar Azad
    Hossain, Syed Akhter
    [J]. 2019 10TH INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION AND NETWORKING TECHNOLOGIES (ICCCNT), 2019,