Finding strong gravitational lenses in the Kilo Degree Survey with Convolutional Neural Networks

被引:123
|
作者
Petrillo, C. E. [1 ]
Tortora, C. [1 ]
Chatterjee, S. [1 ]
Vernardos, G. [1 ]
Koopmans, L. V. E. [1 ]
Kleijn, G. Verdoes [1 ]
Napolitano, N. R. [2 ]
Covone, G. [3 ]
Schneider, P. [4 ]
Grado, A. [2 ]
McFarland, J. [1 ]
机构
[1] Univ Groningen, Kapteyn Astron Inst, Postbus 800, NL-9700 AB Groningen, Netherlands
[2] Osserv Astron Capodimonte, INAF, Salita Moiariello 16, I-80131 Naples, Italy
[3] Univ Naples Federico II, Dipartimento Sci Fis, Compl Univ Monte S Angelo, I-80126 Naples, Italy
[4] Argelander Inst Astron, Hugel 71, D-53121 Bonn, Germany
关键词
gravitational lensing: strong; methods: data analysis; methods: statistical; surveys; galaxies: elliptical and lenticular; cD; EARLY-TYPE GALAXIES; INITIAL MASS FUNCTION; DIGITAL SKY SURVEY; TO-LIGHT RATIOS; DARK-MATTER; ACS SURVEY; 2-DIMENSIONAL KINEMATICS; PHOTOMETRIC REDSHIFTS; AUTOMATIC DETECTION; INTERNAL STRUCTURE;
D O I
10.1093/mnras/stx2052
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The volume of data that will be produced by new-generation surveys requires automatic classification methods to select and analyse sources. Indeed, this is the case for the search for strong gravitational lenses, where the population of the detectable lensed sources is only a very small fraction of the full source population. We apply for the first time a morphological classification method based on a Convolutional Neural Network (CNN) for recognizing strong gravitational lenses in 255 deg(2) of the Kilo Degree Survey (KiDS), one of the current-generation optical wide surveys. The CNN is currently optimized to recognize lenses with Einstein radii greater than or similar to 1.4 arcsec, about twice the r-band seeing in KiDS. In a sample of 21 789 colour-magnitude selected luminous red galaxies (LRGs), of which three are known lenses, the CNN retrieves 761 strong-lens candidates and correctly classifies two out of three of the known lenses. The misclassified lens has an Einstein radius below the range on which the algorithm is trained. We down-select the most reliable 56 candidates by a joint visual inspection. This final sample is presented and discussed. A conservative estimate based on our results shows that with our proposed method it should be possible to find similar to 100 massive LRG-galaxy lenses at z less than or similar to 0.4 in KiDS when completed. In the most optimistic scenario, this number can grow considerably (to maximally similar to 2400 lenses), when widening the colour-magnitude selection and training the CNN to recognize smaller image-separation lens systems.
引用
收藏
页码:1129 / 1150
页数:22
相关论文
共 50 条
  • [1] Testing convolutional neural networks for finding strong gravitational lenses in KiDS
    Petrillo, C. E.
    Tortora, C.
    Chatterjee, S.
    Vernardos, G.
    Koopmans, L. V. E.
    Kleijn, G. Verdoes
    Napolitano, N. R.
    Covone, G.
    Kelvin, L. S.
    Hopkins, A. M.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 482 (01) : 807 - 820
  • [2] Automation of finding strong gravitational lenses in the Kilo Degree Survey with U - DenseLens (DenseLens plus Segmentation)
    Chowdhary, Bharath N.
    Koopmans, Leon V. E.
    Valentijn, Edwin A.
    Kleijn, Gijs Verdoes
    de Jong, Jelte T. A.
    Napolitano, Nicola
    Li, Rui
    Tortora, Crescenzo
    Busillo, Valerio
    Dong, Yue
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2024, 533 (02) : 1426 - 1441
  • [3] LinKS: discovering galaxy-scale strong lenses in the Kilo-Degree Survey using convolutional neural networks
    Petrillo, C. E.
    Tortora, C.
    Vernardos, G.
    Koopmans, L. V. E.
    Kleijn, G. Verdoes
    Bilicki, M.
    Napolitano, N. R.
    Chatterjee, S.
    Covone, G.
    Dvornik, A.
    Erben, T.
    Getman, F.
    Giblin, B.
    Heymans, C.
    de Jong, J. T. A.
    Kuijken, K.
    Schneider, P.
    Shan, H.
    Spiniello, C.
    Wright, A. H.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 484 (03) : 3879 - 3896
  • [4] Finding strong lenses in CFHTLS using convolutional neural networks
    Jacobs, C.
    Glazebrook, K.
    Collett, T.
    More, A.
    McCarthy, C.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 471 (01) : 167 - 181
  • [5] Finding strong lenses in CFHTLS using convolutional neural networks
    Jacobs C.
    Glazebrook K.
    Collett T.
    More A.
    McCarthy C.
    [J]. Jacobs, C. (colinjacobs@swin.edu.au), 1600, Oxford University Press (471): : 167 - 181
  • [6] Fast automated analysis of strong gravitational lenses with convolutional neural networks
    Yashar D. Hezaveh
    Laurence Perreault Levasseur
    Philip J. Marshall
    [J]. Nature, 2017, 548 : 555 - 557
  • [7] Fast automated analysis of strong gravitational lenses with convolutional neural networks
    Hezaveh, Yashar D.
    Levasseur, Laurence Perreault
    Marshall, Philip J.
    [J]. NATURE, 2017, 548 (7669) : 555 - +
  • [8] Lenses In VoicE (LIVE): searching for strong gravitational lenses in the VOICE@VST survey using convolutional neural networks
    Gentile, Fabrizio
    Tortora, Crescenzo
    Covone, Giovanni
    Koopmans, Leon V. E.
    Spiniello, Chiara
    Fan, Zuhui
    Li, Rui
    Liu, Dezi
    Napolitano, Nicola R.
    Vaccari, Mattia
    Fu, Liping
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2022, 510 (01) : 500 - 514
  • [9] The AGEL Survey: Spectroscopic Confirmation of Strong Gravitational Lenses in the DES and DECaLS Fields Selected Using Convolutional Neural Networks
    Tran, Kim-Vy H.
    Harshan, Anishya
    Glazebrook, Karl
    Vasan, G. C. Keerthi
    Jones, Tucker
    Jacobs, Colin
    Kacprzak, Glenn G.
    Barone, Tania M.
    Collett, Thomas E.
    Gupta, Anshu
    Henderson, Astrid
    Kewley, Lisa J.
    Lopez, Sebastian
    Nanayakkara, Themiya
    Sanders, Ryan L.
    Sweet, Sarah M.
    [J]. ASTRONOMICAL JOURNAL, 2022, 164 (04):
  • [10] Finding high-redshift strong lenses in DES using convolutional neural networks
    Jacobs, C.
    Collett, T.
    Glazebrook, K.
    McCarthy, C.
    Qin, A. K.
    Abbott, T. M. C.
    Abdalla, F. B.
    Annis, J.
    Avila, S.
    Bechtol, K.
    Bertin, E.
    Brooks, D.
    Buckley-Geer, E.
    Burke, D. L.
    Rosell, A. Carnero
    Kind, M. Carrasco
    Carretero, J.
    da Costa, L. N.
    Davis, C.
    De Vicente, J.
    Desai, S.
    Diehl, H. T.
    Doel, P.
    Eifler, T. F.
    Flaugher, B.
    Frieman, J.
    Garcia-Bellido, J.
    Gaztanaga, E.
    Gerdes, D. W.
    Goldstein, D. A.
    Gruen, D.
    Gruendl, A.
    Gschwend, J.
    Gutierrez, G.
    Hartley, W. G.
    Hollowood, D. L.
    Honscheid, K.
    Hoyle, B.
    James, D. J.
    Kuehn, K.
    Kuropatkin, N.
    Lahav, O.
    Li, T. S.
    Lima, M.
    Lin, H.
    Maia, M. A. G.
    Martini, P.
    Miller, C. J.
    Miquel, R.
    Nord, B.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 484 (04) : 5330 - 5349