Finding strong lenses in CFHTLS using convolutional neural networks

被引:0
|
作者
Jacobs C. [1 ]
Glazebrook K. [1 ]
Collett T. [2 ]
More A. [3 ]
McCarthy C. [4 ]
机构
[1] Centre for Astro, Physics and Supercomputing, Swinburne University of Technology, PO Box 218, Hawthorn, 3122, VIC
[2] Institute of Cosmology and Gravitation, University of Portsmouth, Burnaby Rd, Portsmouth
[3] Kavli IPMU (WPI), UTIAS, The University of Tokyo, Kashiwa, Chiba
[4] School of Software and Electrical Engineering, Swinburne University of Technology, PO Box 218, Hawthorn, 3122, VIC
来源
Jacobs, C. (colinjacobs@swin.edu.au) | 1600年 / Oxford University Press卷 / 471期
基金
日本学术振兴会;
关键词
Gravitational lensing: strong; Methods: statistical;
D O I
10.1093/MNRAS/STX1492
中图分类号
学科分类号
摘要
We train and apply convolutional neural networks, a machine learning technique developed to learn from and classify image data, to Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) imaging for the identification of potential strong lensing systems. An ensemble of four convolutional neural networks was trained on images of simulated galaxy-galaxy lenses. The training sets consisted of a total of 62 406 simulated lenses and 64 673 nonlens negative examples generated with two different methodologies. An ensemble of trained networks was applied to all of the 171 deg2 of the CFHTLS wide field image data, identifying 18 861 candidates including 63 known and 139 other potential lens candidates. A second search of 1.4 million early-type galaxies selected from the survey catalogue as potential deflectors, identified 2465 candidates including 117 previously known lens candidates, 29 confirmed lenses/high-quality lens candidates, 266 novel probable or potential lenses and 2097 candidates we classify as false positives. For the catalogue-based search we estimate a completeness of 21-28 per cent with respect to detectable lenses and a purity of 15 per cent, with a false-positive rate of 1 in 671 images tested.We predict a human astronomer reviewing candidates produced by the system would identify 20 probable lenses and 100 possible lenses per hour in a sample selected by the robot. Convolutional neural networks are therefore a promising tool for use in the search for lenses in current and forthcoming surveys such as the Dark Energy Survey and the Large Synoptic Survey Telescope. © 2017 The Authors.
引用
收藏
页码:167 / 181
页数:14
相关论文
共 50 条
  • [1] Finding strong lenses in CFHTLS using convolutional neural networks
    Jacobs, C.
    Glazebrook, K.
    Collett, T.
    More, A.
    McCarthy, C.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 471 (01) : 167 - 181
  • [2] Finding high-redshift strong lenses in DES using convolutional neural networks
    Jacobs, C.
    Collett, T.
    Glazebrook, K.
    McCarthy, C.
    Qin, A. K.
    Abbott, T. M. C.
    Abdalla, F. B.
    Annis, J.
    Avila, S.
    Bechtol, K.
    Bertin, E.
    Brooks, D.
    Buckley-Geer, E.
    Burke, D. L.
    Rosell, A. Carnero
    Kind, M. Carrasco
    Carretero, J.
    da Costa, L. N.
    Davis, C.
    De Vicente, J.
    Desai, S.
    Diehl, H. T.
    Doel, P.
    Eifler, T. F.
    Flaugher, B.
    Frieman, J.
    Garcia-Bellido, J.
    Gaztanaga, E.
    Gerdes, D. W.
    Goldstein, D. A.
    Gruen, D.
    Gruendl, A.
    Gschwend, J.
    Gutierrez, G.
    Hartley, W. G.
    Hollowood, D. L.
    Honscheid, K.
    Hoyle, B.
    James, D. J.
    Kuehn, K.
    Kuropatkin, N.
    Lahav, O.
    Li, T. S.
    Lima, M.
    Lin, H.
    Maia, M. A. G.
    Martini, P.
    Miller, C. J.
    Miquel, R.
    Nord, B.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 484 (04) : 5330 - 5349
  • [3] Testing convolutional neural networks for finding strong gravitational lenses in KiDS
    Petrillo, C. E.
    Tortora, C.
    Chatterjee, S.
    Vernardos, G.
    Koopmans, L. V. E.
    Kleijn, G. Verdoes
    Napolitano, N. R.
    Covone, G.
    Kelvin, L. S.
    Hopkins, A. M.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 482 (01) : 807 - 820
  • [4] Finding strong gravitational lenses in the Kilo Degree Survey with Convolutional Neural Networks
    Petrillo, C. E.
    Tortora, C.
    Chatterjee, S.
    Vernardos, G.
    Koopmans, L. V. E.
    Kleijn, G. Verdoes
    Napolitano, N. R.
    Covone, G.
    Schneider, P.
    Grado, A.
    McFarland, J.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 472 (01) : 1129 - 1150
  • [5] DIRECTION FINDING USING CONVOLUTIONAL NEURAL NETWORKS and CONVOLUTIONAL RECURRENT NEURAL NETWORKS
    Uckun, Fehmi Ayberk
    Ozer, Hakan
    Nurbas, Ekin
    Onat, Emrah
    2020 28TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2020,
  • [6] Fast automated analysis of strong gravitational lenses with convolutional neural networks
    Yashar D. Hezaveh
    Laurence Perreault Levasseur
    Philip J. Marshall
    Nature, 2017, 548 : 555 - 557
  • [7] Fast automated analysis of strong gravitational lenses with convolutional neural networks
    Hezaveh, Yashar D.
    Levasseur, Laurence Perreault
    Marshall, Philip J.
    NATURE, 2017, 548 (7669) : 555 - +
  • [8] Finding the Iris Using Convolutional Neural Networks
    Yu. S. Efimov
    V. Yu. Leonov
    G. A. Odinokikh
    I. A. Solomatin
    Journal of Computer and Systems Sciences International, 2021, 60 : 108 - 117
  • [9] Finding the Iris Using Convolutional Neural Networks
    Efimov, Yu. S.
    Leonov, V. Yu.
    Odinokikh, G. A.
    Solomatin, I. A.
    JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL, 2021, 60 (01) : 108 - 117
  • [10] Lenses In VoicE (LIVE): searching for strong gravitational lenses in the VOICE@VST survey using convolutional neural networks
    Gentile, Fabrizio
    Tortora, Crescenzo
    Covone, Giovanni
    Koopmans, Leon V. E.
    Spiniello, Chiara
    Fan, Zuhui
    Li, Rui
    Liu, Dezi
    Napolitano, Nicola R.
    Vaccari, Mattia
    Fu, Liping
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2022, 510 (01) : 500 - 514