On a Spanning K-tree Containing Specified Vertices in a Graph

被引:0
|
作者
Song, Fei-fei [1 ]
Hu, Zhi-quan [2 ]
机构
[1] Henan Agr Univ, Dept Informat & Computat Sci, Zhengzhou 450002, Peoples R China
[2] Cent China Normal Univ, Fac Math & Stat, Wuhan 430079, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
spanning tree; k-tree; (s+1)-connected graphs; degree sum condition; specified vertices;
D O I
10.1007/s10255-019-0864-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A k-tree is a tree with maximum degree at most k. In this paper, we give a sharp degree sum condition for a graph to have a spanning k-tree in which specified vertices have degree less than t, where 1 <= t <= k. We denote by sigma(k)(G) the minimum value of the degree sum of k independent vertices in a graph G. Let k >= 2, s >= 0 and 1 <= t <= k be integers, and suppose G is an (s + 1)-connected graph with sigma(k)(G) >= divide G divide + (k - t)s - 1. Then for any s specified vertices, G contains a spanning k-tree in which every specified vertex has degree at most t. This improves a result obtained by Matsuda and Matsumura.
引用
下载
收藏
页码:919 / 923
页数:5
相关论文
共 50 条
  • [41] Document Clustering with K-tree
    De Vries, Christopher M.
    Geva, Shlomo
    ADVANCES IN FOCUSED RETRIEVAL, 2009, 5631 : 420 - 431
  • [42] The Extended k-tree Algorithm
    Minder, Lorenz
    Sinclair, Alistair
    JOURNAL OF CRYPTOLOGY, 2012, 25 (02) : 349 - 382
  • [43] METHOD OF CREATING A MINIMAL SPANNING TREE ON AN ARBITRARY SUBSET OF VERTICES OF A WEIGHTED UNDIRECTED GRAPH
    Batsamut, V. M.
    Hodlevsky, S.
    Babkov, Yu. P.
    Morkvin, D. A.
    RADIO ELECTRONICS COMPUTER SCIENCE CONTROL, 2024, (01) : 188 - 196
  • [44] The Extended k-tree Algorithm
    Lorenz Minder
    Alistair Sinclair
    Journal of Cryptology, 2012, 25 : 349 - 382
  • [45] Random indexing K-tree
    De Vries, Christopher M.
    De Vine, Lance
    Geva, Shlomo
    ADCS 2009 - Proceedings of the Fourteenth Australasian Document Computing Symposium, 2009, : 43 - 50
  • [46] The bandwidth of the complement of a k-tree
    Jinjiang Y.
    Yixun L.
    Applied Mathematics-A Journal of Chinese Universities, 1998, 13 (4) : 451 - 454
  • [47] ALGORITHMS FOR A CORE AND K-TREE CORE OF A TREE
    PENG, ST
    STEPHENS, AB
    YESHA, Y
    JOURNAL OF ALGORITHMS, 1993, 15 (01) : 143 - 159
  • [48] GRAPH AUGMENTATION PROBLEMS FOR A SPECIFIED SET OF VERTICES
    WATANABE, T
    HIGASHI, Y
    NAKAMURA, A
    LECTURE NOTES IN COMPUTER SCIENCE, 1990, 450 : 378 - 387
  • [49] On k-tree Containment Graphs of Paths in a Tree
    Liliana Alcón
    Noemí Gudiño
    Marisa Gutierrez
    Order, 2021, 38 : 229 - 244
  • [50] LONG CYCLES THROUGH SPECIFIED VERTICES IN A GRAPH
    SAITO, A
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1989, 47 (02) : 220 - 230