On a Spanning K-tree Containing Specified Vertices in a Graph

被引:0
|
作者
Song, Fei-fei [1 ]
Hu, Zhi-quan [2 ]
机构
[1] Henan Agr Univ, Dept Informat & Computat Sci, Zhengzhou 450002, Peoples R China
[2] Cent China Normal Univ, Fac Math & Stat, Wuhan 430079, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
spanning tree; k-tree; (s+1)-connected graphs; degree sum condition; specified vertices;
D O I
10.1007/s10255-019-0864-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A k-tree is a tree with maximum degree at most k. In this paper, we give a sharp degree sum condition for a graph to have a spanning k-tree in which specified vertices have degree less than t, where 1 <= t <= k. We denote by sigma(k)(G) the minimum value of the degree sum of k independent vertices in a graph G. Let k >= 2, s >= 0 and 1 <= t <= k be integers, and suppose G is an (s + 1)-connected graph with sigma(k)(G) >= divide G divide + (k - t)s - 1. Then for any s specified vertices, G contains a spanning k-tree in which every specified vertex has degree at most t. This improves a result obtained by Matsuda and Matsumura.
引用
下载
收藏
页码:919 / 923
页数:5
相关论文
共 50 条
  • [31] On 2-factors with cycles containing specified vertices in a bipartite graph
    Gao Y.
    Yan J.
    Li G.
    Journal of Applied Mathematics and Computing, 2009, 31 (1-2) : 203 - 215
  • [32] On 2-factors with quadrilaterals containing specified vertices in a bipartite graph
    Yan, Jin
    Liu, Guizhen
    ARS COMBINATORIA, 2007, 82 : 133 - 144
  • [33] On a spanning tree with specified leaves
    Egawa, Yoshimi
    Matsuda, Haruhide
    Yamashita, Tomoki
    Yoshimoto, Kiyoshi
    GRAPHS AND COMBINATORICS, 2008, 24 (01) : 13 - 18
  • [34] On a Spanning Tree with Specified Leaves
    Yoshimi Egawa
    Haruhide Matsuda
    Tomoki Yamashita
    Kiyoshi Yoshimoto
    Graphs and Combinatorics, 2008, 24 : 13 - 18
  • [35] Efficient parallel algorithms for constructing a k-tree center and a k-tree core of a tree network
    Wang, Y
    Wang, DQ
    Liu, W
    Tian, BY
    ALGORITHMS AND COMPUTATION, 2005, 3827 : 553 - 562
  • [36] CYCLES THROUGH SPECIFIED VERTICES OF A GRAPH
    BONDY, JA
    LOVASZ, L
    COMBINATORICA, 1981, 1 (02) : 117 - 140
  • [37] THE BANDWIDTH OF THE COMPLEMENT OF A K-TREE
    YUAN JINJIANG AND LIN YIXUN
    Applied Mathematics:A Journal of Chinese Universities, 1998, (04) : 91 - 94
  • [38] The extended k-tree algorithm
    Minder, Lorenz
    Sinclair, Alistair
    PROCEEDINGS OF THE TWENTIETH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2009, : 586 - 595
  • [39] A Spanning Tree with High Degree Vertices
    Kenta Ozeki
    Tomoki Yamashita
    Graphs and Combinatorics, 2010, 26 : 591 - 596
  • [40] A Spanning Tree with High Degree Vertices
    Ozeki, Kenta
    Yamashita, Tomoki
    GRAPHS AND COMBINATORICS, 2010, 26 (04) : 591 - 596