On a Spanning K-tree Containing Specified Vertices in a Graph

被引:0
|
作者
Song, Fei-fei [1 ]
Hu, Zhi-quan [2 ]
机构
[1] Henan Agr Univ, Dept Informat & Computat Sci, Zhengzhou 450002, Peoples R China
[2] Cent China Normal Univ, Fac Math & Stat, Wuhan 430079, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
spanning tree; k-tree; (s+1)-connected graphs; degree sum condition; specified vertices;
D O I
10.1007/s10255-019-0864-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A k-tree is a tree with maximum degree at most k. In this paper, we give a sharp degree sum condition for a graph to have a spanning k-tree in which specified vertices have degree less than t, where 1 <= t <= k. We denote by sigma(k)(G) the minimum value of the degree sum of k independent vertices in a graph G. Let k >= 2, s >= 0 and 1 <= t <= k be integers, and suppose G is an (s + 1)-connected graph with sigma(k)(G) >= divide G divide + (k - t)s - 1. Then for any s specified vertices, G contains a spanning k-tree in which every specified vertex has degree at most t. This improves a result obtained by Matsuda and Matsumura.
引用
下载
收藏
页码:919 / 923
页数:5
相关论文
共 50 条