Ultra-low thermal expansion realized in giant negative thermal expansion materials through self-compensation

被引:21
|
作者
Shen, Fei-Ran [1 ,2 ,3 ]
Kuang, Hao [1 ,2 ,3 ]
Hu, Feng-Xia [1 ,2 ,3 ]
Wu, Hui [4 ]
Huang, Qing-Zhen [5 ]
Liang, Fei-Xiang [1 ,2 ,3 ]
Qiao, Kai-Ming [1 ,2 ,3 ]
Li, Jia [1 ,2 ,3 ]
Wang, Jing [1 ,2 ,3 ]
Liu, Yao [1 ,2 ,3 ]
Zhang, Lei [6 ]
He, Min [1 ,2 ,3 ]
Zhang, Ying [1 ,2 ,3 ]
Zuo, Wen-Liang [1 ,2 ,3 ]
Sun, Ji-Rong [1 ,2 ,3 ]
Shen, Bao-Gen [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Inst Phys, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, State Key Lab Magnetism, Inst Phys, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Sch Phys Sci, Beijing 100049, Peoples R China
[4] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA
[5] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA
[6] Chinese Acad Sci, High Magnet Field Lab, Hefei 230031, Anhui, Peoples R China
来源
APL MATERIALS | 2017年 / 5卷 / 10期
基金
国家重点研发计划;
关键词
GLASS-CERAMICS; TRANSITION; NITRIDE;
D O I
10.1063/1.4990481
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Materials with zero thermal expansion (ZTE) or precisely tailored thermal expansion are in urgent demand of modern industries. However, the overwhelming majority of materials show positive thermal expansion. To develop ZTE or negative thermal expansion (NTE) materials as compensators has become an important challenge. Here, we present the evidence for the realization of ultra-low thermal expansion in Mn-Co-Ge-In particles. The bulk with the Ni2In-type hexagonal structure undergoes giant NTE owing to a martensitic magnetostructural transition. The major finding is that the thermal expansion behavior can be totally controlled by modulating the crystallinity degree and phase transition from atomic scale. Self-compensation effect leads to ultra-low thermal expansion with a linear expansion coefficient as small as +0.68 x 10(-6)/K over a wide temperature range around room temperature. The present study opens an avenue to reach ZTE particularly from the large class of giant NTE materials based on phase transition. (C) 2017 Author(s).
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Quest for Colossal Negative Thermal Expansion Materials
    Azuma M.
    Oka K.
    Yamamoto H.
    Sakai Y.
    Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2022, 69 (08): : 356 - 361
  • [42] EXAFS studies of negative thermal expansion materials
    Fornasini, Paolo
    Ahmed, Sameh I.
    Sanson, Andrea
    Vaccari, Marco
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2008, 245 (11): : 2497 - 2503
  • [43] Giant negative thermal expansion in a textured MnCoSi alloy
    Hao, Xiaowen
    Hu, Qiubo
    Gao, Meiqi
    Yang, Bo
    Wang, Dunhui
    Li, Zongbin
    Yan, Haile
    Zhao, Xiang
    Zuo, Liang
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 891
  • [44] Giant negative thermal expansion in antiperovskite manganese nitrides
    Hamada, T.
    Takenaka, K.
    JOURNAL OF APPLIED PHYSICS, 2011, 109 (07)
  • [45] Giant negative thermal expansion in a textured MnCoSi alloy
    Hao, Xiaowen
    Hu, Qiubo
    Gao, Meiqi
    Yang, Bo
    Wang, Dunhui
    Li, Zongbin
    Yan, Haile
    Zhao, Xiang
    Zuo, Liang
    Journal of Alloys and Compounds, 2022, 891
  • [46] NEXCERA: Ultra low thermal expansion ceramics
    Nose, Tetsuro
    Nakabayashi, Masashi
    Kosugi, Nobumasa
    Takahasi, Fumiaki
    Morita, Hidehiko
    Nippon Steel Technical Report, 2001, (84): : 5 - 11
  • [47] PRECISION THERMAL EXPANSION MEASUREMENTS ON LOW EXPANSION OPTICAL MATERIALS
    PLUMMER, WA
    HAGY, HE
    APPLIED OPTICS, 1968, 7 (05): : 825 - &
  • [48] MEASUREMENT OF THE THERMAL EXPANSION COEFFICIENT OF AN Al-Mg ALLOY AT ULTRA-LOW TEMPERATURES
    Bassan, M.
    Buonomo, B.
    Cavallari, G.
    Coccia, E.
    D'Antonio, S.
    Fafone, V.
    Foggetta, L. G.
    Ligi, C.
    Marini, A.
    Mazzitelli, G.
    Modestino, G.
    Pizzella, G.
    Quintieri, L.
    Ronga, F.
    Valente, P.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2013, 27 (22):
  • [49] Ultra-low thermal expansion coefficient of PZB/β-eucryptite composite glass for MEMS packaging
    Li, Guojun
    Fu, Renli
    Agathopoulos, Simeon
    Su, Xinqing
    He, Qinjiang
    Ji, Yanru
    Liu, Xuhai
    CERAMICS INTERNATIONAL, 2020, 46 (06) : 8385 - 8390
  • [50] Comparison of material properties between ultra low thermal expansion ceramics and conventional low thermal expansion glass
    Kamiya, Tomohiro
    Mizutani, Tadahito
    MATERIAL TECHNOLOGIES AND APPLICATIONS TO OPTICS, STRUCTURES, COMPONENTS, AND SUB-SYSTEMS III, 2017, 10372