Ultra-low thermal expansion realized in giant negative thermal expansion materials through self-compensation

被引:21
|
作者
Shen, Fei-Ran [1 ,2 ,3 ]
Kuang, Hao [1 ,2 ,3 ]
Hu, Feng-Xia [1 ,2 ,3 ]
Wu, Hui [4 ]
Huang, Qing-Zhen [5 ]
Liang, Fei-Xiang [1 ,2 ,3 ]
Qiao, Kai-Ming [1 ,2 ,3 ]
Li, Jia [1 ,2 ,3 ]
Wang, Jing [1 ,2 ,3 ]
Liu, Yao [1 ,2 ,3 ]
Zhang, Lei [6 ]
He, Min [1 ,2 ,3 ]
Zhang, Ying [1 ,2 ,3 ]
Zuo, Wen-Liang [1 ,2 ,3 ]
Sun, Ji-Rong [1 ,2 ,3 ]
Shen, Bao-Gen [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Inst Phys, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, State Key Lab Magnetism, Inst Phys, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Sch Phys Sci, Beijing 100049, Peoples R China
[4] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA
[5] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA
[6] Chinese Acad Sci, High Magnet Field Lab, Hefei 230031, Anhui, Peoples R China
来源
APL MATERIALS | 2017年 / 5卷 / 10期
基金
国家重点研发计划;
关键词
GLASS-CERAMICS; TRANSITION; NITRIDE;
D O I
10.1063/1.4990481
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Materials with zero thermal expansion (ZTE) or precisely tailored thermal expansion are in urgent demand of modern industries. However, the overwhelming majority of materials show positive thermal expansion. To develop ZTE or negative thermal expansion (NTE) materials as compensators has become an important challenge. Here, we present the evidence for the realization of ultra-low thermal expansion in Mn-Co-Ge-In particles. The bulk with the Ni2In-type hexagonal structure undergoes giant NTE owing to a martensitic magnetostructural transition. The major finding is that the thermal expansion behavior can be totally controlled by modulating the crystallinity degree and phase transition from atomic scale. Self-compensation effect leads to ultra-low thermal expansion with a linear expansion coefficient as small as +0.68 x 10(-6)/K over a wide temperature range around room temperature. The present study opens an avenue to reach ZTE particularly from the large class of giant NTE materials based on phase transition. (C) 2017 Author(s).
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Giant Negative Thermal Expansion Materials: Progress of Research and Future Prospects
    Takenaka, Koshi
    MATERIALS TRANSACTIONS, 2024, 65 (03) : 243 - 252
  • [22] Superheat-resistant polyimides with ultra-low coefficients of thermal expansion
    Qian, Guangtao
    Chen, Haiquan
    Song, Guangliang
    Dai, Fengna
    Chen, Chunhai
    Yao, Jianan
    POLYMER, 2020, 196
  • [23] A LASER SPECKLE METHOD FOR MEASURING ULTRA-LOW THERMAL-EXPANSION
    VIKRAM, CS
    MCKINSTRY, HA
    OPTICS AND LASERS IN ENGINEERING, 1985, 6 (02) : 91 - 100
  • [24] Giant Negative Thermal Expansion Materials: Progress of Research and Future Prospects
    Takenaka K.
    Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2023, 70 (08): : 361 - 370
  • [25] Negative thermal expansion in functional materials: controllable thermal expansion by chemical modifications
    Chen, Jun
    Hu, Lei
    Deng, Jinxia
    Xing, Xianran
    CHEMICAL SOCIETY REVIEWS, 2015, 44 (11) : 3522 - 3567
  • [26] Negative thermal expansion in magnetic materials
    Song, Yuzhu
    Shi, Naike
    Deng, Shiqing
    Xing, Xianran
    Chen, Jun
    PROGRESS IN MATERIALS SCIENCE, 2021, 121
  • [27] Negative thermal expansion in molecular materials
    Liu, Zhanning
    Gao, Qilong
    Chen, Jun
    Deng, Jinxia
    Lin, Kun
    Xing, Xianran
    CHEMICAL COMMUNICATIONS, 2018, 54 (41) : 5164 - 5176
  • [28] Negative thermal expansion: Mechanisms and materials
    Erjun Liang
    Qiang Sun
    Huanli Yuan
    Jiaqi Wang
    Gaojie Zeng
    Qilong Gao
    Frontiers of Physics, 2021, 16
  • [29] Negative thermal expansion: Mechanisms and materials
    Erjun Liang
    Qiang Sun
    Huanli Yuan
    Jiaqi Wang
    Gaojie Zeng
    Qilong Gao
    Frontiers of Physics, 2021, 16 (05) : 133 - 169
  • [30] Progress in Negative Thermal Expansion Materials
    Liang Yuan
    Zhou Hong-Ying
    Liang Er-Jun
    Yuan Bin
    Chao Ming-Ju
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2008, 24 (10) : 1551 - 1557