Ultra-low thermal expansion realized in giant negative thermal expansion materials through self-compensation

被引:21
|
作者
Shen, Fei-Ran [1 ,2 ,3 ]
Kuang, Hao [1 ,2 ,3 ]
Hu, Feng-Xia [1 ,2 ,3 ]
Wu, Hui [4 ]
Huang, Qing-Zhen [5 ]
Liang, Fei-Xiang [1 ,2 ,3 ]
Qiao, Kai-Ming [1 ,2 ,3 ]
Li, Jia [1 ,2 ,3 ]
Wang, Jing [1 ,2 ,3 ]
Liu, Yao [1 ,2 ,3 ]
Zhang, Lei [6 ]
He, Min [1 ,2 ,3 ]
Zhang, Ying [1 ,2 ,3 ]
Zuo, Wen-Liang [1 ,2 ,3 ]
Sun, Ji-Rong [1 ,2 ,3 ]
Shen, Bao-Gen [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Inst Phys, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, State Key Lab Magnetism, Inst Phys, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Sch Phys Sci, Beijing 100049, Peoples R China
[4] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA
[5] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA
[6] Chinese Acad Sci, High Magnet Field Lab, Hefei 230031, Anhui, Peoples R China
来源
APL MATERIALS | 2017年 / 5卷 / 10期
基金
国家重点研发计划;
关键词
GLASS-CERAMICS; TRANSITION; NITRIDE;
D O I
10.1063/1.4990481
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Materials with zero thermal expansion (ZTE) or precisely tailored thermal expansion are in urgent demand of modern industries. However, the overwhelming majority of materials show positive thermal expansion. To develop ZTE or negative thermal expansion (NTE) materials as compensators has become an important challenge. Here, we present the evidence for the realization of ultra-low thermal expansion in Mn-Co-Ge-In particles. The bulk with the Ni2In-type hexagonal structure undergoes giant NTE owing to a martensitic magnetostructural transition. The major finding is that the thermal expansion behavior can be totally controlled by modulating the crystallinity degree and phase transition from atomic scale. Self-compensation effect leads to ultra-low thermal expansion with a linear expansion coefficient as small as +0.68 x 10(-6)/K over a wide temperature range around room temperature. The present study opens an avenue to reach ZTE particularly from the large class of giant NTE materials based on phase transition. (C) 2017 Author(s).
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Negative thermal expansion: Mechanisms and materials
    Liang, Erjun
    Sun, Qiang
    Yuan, Huanli
    Wang, Jiaqi
    Zeng, Gaojie
    Gao, Qilong
    FRONTIERS OF PHYSICS, 2021, 16 (05)
  • [32] ULTRA-PRECISE THERMAL-EXPANSION MEASUREMENTS OF 7 LOW EXPANSION MATERIALS
    BERTHOLD, JW
    JACOBS, SF
    APPLIED OPTICS, 1976, 15 (10): : 2344 - 2347
  • [33] Giant negative thermal expansion in magnetic nanocrystals
    Zheng, X. G.
    Kubozono, H.
    Yamada, H.
    Kato, K.
    Ishiwata, Y.
    Xu, C. N.
    NATURE NANOTECHNOLOGY, 2008, 3 (12) : 724 - 726
  • [34] Giant negative thermal expansion in magnetic nanocrystals
    X. G. Zheng
    H. Kubozono
    H. Yamada
    K. Kato
    Y. Ishiwata
    C. N. Xu
    Nature Nanotechnology, 2008, 3 : 724 - 726
  • [35] Progress of Research in Negative Thermal Expansion Materials: Paradigm Shift in the Control of Thermal Expansion
    Takenaka, Koshi
    FRONTIERS IN CHEMISTRY, 2018, 6
  • [36] Thermal Enhancement of Luminescence for Negative Thermal Expansion in Molecular Materials
    Chen, Liang
    Chen, Xin
    Ma, Rui
    Lin, Kun
    Li, Qiang
    Lang, Jian-Ping
    Liu, Chunyu
    Kato, Kenichi
    Huang, Ling
    Xing, Xianran
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2022, 144 (30) : 13688 - 13695
  • [37] Local behaviour of negative thermal expansion materials
    Fornasini, P
    Dalba, G
    Grisenti, R
    Purans, J
    Vaccari, M
    Rocca, F
    Sanson, A
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2006, 246 (01): : 180 - 183
  • [38] Soliton Generation in Negative Thermal Expansion Materials
    Curry, Erin B. B.
    Lyszak, Kaitlin
    Sheets, Donal
    Occhialini, Connor A. A.
    Rozman, Michael G. G.
    Hancock, Jason N. N.
    FRONTIERS IN MATERIALS, 2021, 8
  • [39] Negative thermal expansion in porous framework materials
    Cameron, Lisa J.
    Price, David J.
    Kepert, Cameron J.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2011, 67 : C94 - C94
  • [40] Negative thermal expansion in framework structure materials
    Shi, Naike
    Song, Yuzhu
    Xing, Xianran
    Chen, Jun
    COORDINATION CHEMISTRY REVIEWS, 2021, 449