Ultra-low thermal expansion realized in giant negative thermal expansion materials through self-compensation

被引:21
|
作者
Shen, Fei-Ran [1 ,2 ,3 ]
Kuang, Hao [1 ,2 ,3 ]
Hu, Feng-Xia [1 ,2 ,3 ]
Wu, Hui [4 ]
Huang, Qing-Zhen [5 ]
Liang, Fei-Xiang [1 ,2 ,3 ]
Qiao, Kai-Ming [1 ,2 ,3 ]
Li, Jia [1 ,2 ,3 ]
Wang, Jing [1 ,2 ,3 ]
Liu, Yao [1 ,2 ,3 ]
Zhang, Lei [6 ]
He, Min [1 ,2 ,3 ]
Zhang, Ying [1 ,2 ,3 ]
Zuo, Wen-Liang [1 ,2 ,3 ]
Sun, Ji-Rong [1 ,2 ,3 ]
Shen, Bao-Gen [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Inst Phys, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, State Key Lab Magnetism, Inst Phys, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Sch Phys Sci, Beijing 100049, Peoples R China
[4] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA
[5] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA
[6] Chinese Acad Sci, High Magnet Field Lab, Hefei 230031, Anhui, Peoples R China
来源
APL MATERIALS | 2017年 / 5卷 / 10期
基金
国家重点研发计划;
关键词
GLASS-CERAMICS; TRANSITION; NITRIDE;
D O I
10.1063/1.4990481
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Materials with zero thermal expansion (ZTE) or precisely tailored thermal expansion are in urgent demand of modern industries. However, the overwhelming majority of materials show positive thermal expansion. To develop ZTE or negative thermal expansion (NTE) materials as compensators has become an important challenge. Here, we present the evidence for the realization of ultra-low thermal expansion in Mn-Co-Ge-In particles. The bulk with the Ni2In-type hexagonal structure undergoes giant NTE owing to a martensitic magnetostructural transition. The major finding is that the thermal expansion behavior can be totally controlled by modulating the crystallinity degree and phase transition from atomic scale. Self-compensation effect leads to ultra-low thermal expansion with a linear expansion coefficient as small as +0.68 x 10(-6)/K over a wide temperature range around room temperature. The present study opens an avenue to reach ZTE particularly from the large class of giant NTE materials based on phase transition. (C) 2017 Author(s).
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Ultra-high accuracy measurement of the coefficient of thermal expansion for ultra-low expansion materials
    Badami, VG
    Linder, M
    EMERGING LITHOGRAPHIC TECHNOLOGIES VI, PTS 1 AND 2, 2002, 4688 : 469 - 480
  • [2] Thin Films with Ultra-low Thermal Expansion
    Yamamoto, Namiko
    Gdoutos, Eleftherios
    Toda, Risaku
    White, Victor
    Manohara, Harish
    Daraio, Chiara
    ADVANCED MATERIALS, 2014, 26 (19) : 3076 - 3080
  • [3] Negative Thermal Expansion in the Materials With Giant Magnetocaloric Effect
    Hu, Fengxia
    Shen, Feiran
    Hao, Jiazheng
    Liu, Yao
    Wang, Jing
    Sun, Jirong
    Shen, Baogen
    FRONTIERS IN CHEMISTRY, 2018, 6
  • [4] Metamaterials with modulated coefficient of thermal expansion and ultra-low thermal stress
    Chen, Jiaxin
    Wei, Kai
    Wang, Zhonggang
    Wang, Rong
    Liang, Xiubing
    Fang, Guangqiang
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2024, 269
  • [5] Negative Thermal Expansion Materials
    Evans, John S. O.
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2000, 39 (01) : 535 - 539
  • [6] Negative thermal expansion materials
    Sleight, AW
    CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 1998, 3 (02): : 128 - 131
  • [7] Negative thermal expansion materials
    Evans, JSO
    Mary, TA
    Sleight, AW
    PHYSICA B, 1997, 241 : 311 - 316
  • [8] Negative Thermal Expansion Materials
    Evans, John S. O.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2004, 60 : S1 - S1
  • [9] Negative thermal expansion materials
    Inorganic Chemistry, Oxford, United Kingdom
    Physica B: Condensed Matter, 1997, 241-243 : 311 - 316
  • [10] Negative thermal expansion materials
    Jakubinek, Michael B.
    Whitman, Catherine A.
    White, Mary Anne
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2010, 99 (01) : 165 - 172