Stability of Galerkin discretizations of a mixed space-time variational formulation of parabolic evolution equations

被引:27
|
作者
Stevenson, Rob [1 ]
Westerdiep, Jan [1 ]
机构
[1] Univ Amsterdam, Korteweg de Vries KdV Inst Math, POB 94248, NL-1090 GE Amsterdam, Netherlands
关键词
parabolic PDEs; space-time variational formulations; quasi-best approximations; stability; ADAPTIVE WAVELET METHODS; L-2-PROJECTION;
D O I
10.1093/imanum/drz069
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze Galerkin discretizations of a new well-posed mixed space-time variational formulation of parabolic partial differential equations. For suitable pairs of finite element trial spaces, the resulting Galerkin operators are shown to be uniformly stable. The method is compared to two related space-time discretization methods introduced by Andreev (2013, Stability of sparse space-time finite element discretizations of linear parabolic evolution equations. IMA J. Numer. Anal., 33, 242-260) and by Steinbach (2015, Space-time finite element methods for parabolic problems. Comput. Methods Appl. Math., 15, 551-566).
引用
收藏
页码:28 / 47
页数:20
相关论文
共 50 条