Stability of Galerkin discretizations of a mixed space-time variational formulation of parabolic evolution equations

被引:27
|
作者
Stevenson, Rob [1 ]
Westerdiep, Jan [1 ]
机构
[1] Univ Amsterdam, Korteweg de Vries KdV Inst Math, POB 94248, NL-1090 GE Amsterdam, Netherlands
关键词
parabolic PDEs; space-time variational formulations; quasi-best approximations; stability; ADAPTIVE WAVELET METHODS; L-2-PROJECTION;
D O I
10.1093/imanum/drz069
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze Galerkin discretizations of a new well-posed mixed space-time variational formulation of parabolic partial differential equations. For suitable pairs of finite element trial spaces, the resulting Galerkin operators are shown to be uniformly stable. The method is compared to two related space-time discretization methods introduced by Andreev (2013, Stability of sparse space-time finite element discretizations of linear parabolic evolution equations. IMA J. Numer. Anal., 33, 242-260) and by Steinbach (2015, Space-time finite element methods for parabolic problems. Comput. Methods Appl. Math., 15, 551-566).
引用
收藏
页码:28 / 47
页数:20
相关论文
共 50 条
  • [31] Acoustics in anisotropic poroelasticity: space-time variational formulation
    Sanchez-Ricart, L.
    Garcia-Pelaez, J.
    MECCANICA, 2014, 49 (12) : 2757 - 2783
  • [32] GALERKIN RUNGE-KUTTA DISCRETIZATIONS FOR SEMILINEAR PARABOLIC EQUATIONS
    KEELING, SL
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1990, 27 (02) : 394 - 418
  • [33] ERROR ESTIMATES FOR SPACE-TIME DISCRETIZATIONS OF A RATE-INDEPENDENT VARIATIONAL INEQUALITY
    Mielke, Alexander
    Paoli, Laetitia
    Petrov, Adrien
    Stefanelli, Ulisse
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 48 (05) : 1625 - 1646
  • [34] STABILITY OF ALE SPACE-TIME DISCONTINUOUS GALERKIN METHOD
    Vlasak, Miloslav
    Balazsova, Monika
    Feistauer, Miloslav
    PROCEEDINGS OF EQUADIFF 2017 CONFERENCE, 2017, : 237 - 246
  • [35] Numerical Approximation of Space-Time Fractional Parabolic Equations
    Bonito, Andrea
    Lei, Wenyu
    Pasciak, Joseph E.
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2017, 17 (04) : 679 - 705
  • [36] An Exact Realization of a Modified Hilbert Transformation for Space-Time Methods for Parabolic Evolution Equations
    Zank, Marco
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2021, 21 (02) : 479 - 496
  • [37] Space-time hp-approximation of parabolic equations
    Devaud, Denis
    Schwab, Christoph
    CALCOLO, 2018, 55 (03)
  • [38] An efficient solver for space-time isogeometric Galerkin methods for parabolic problems
    Loli, Gabriele
    Montardini, Monica
    Sangalli, Giancarlo
    Tani, Mattia
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 80 (11) : 2586 - 2603
  • [39] Space-time adaptive algorithm for the mixed parabolic problem
    Cascon, JM
    Ferragut, L
    Asensio, MI
    NUMERISCHE MATHEMATIK, 2006, 103 (03) : 367 - 392
  • [40] Space-Time adaptive algorithm for the mixed parabolic problem
    J. M. Cascón
    L. Ferragut
    M. I. Asensio
    Numerische Mathematik, 2006, 103 : 367 - 392