Remaining useful life prediction of lithium-ion batteries based on phase space reconstruction and optimized LSTM network

被引:0
|
作者
Qian, Qizheng [1 ]
Zhang, Yong [1 ]
Zheng, Xiujuan [1 ]
Xie, Jin [1 ]
Hao, Weiguang [1 ]
机构
[1] Wuhan Univ Sci & Technol, Sch Informat Sci & Engn, Wuhan 430081, Peoples R China
基金
中国国家自然科学基金;
关键词
Remaining useful life prediction; Phase space reconstruction; Genetic algorithm; Long short-term memory;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
To solve the problems of insufficient adaptability and low prediction accuracy for lithium-ion battery remaining useful life (RUL) prediction, this paper proposes an optimized neural network prediction method to improve prediction ability. Firstly, the original signal is used to decompose and reduce noise by Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN), and extract the residual that best reflects the degradation trend as a feature. Secondly, the phase space reconstruction method can determine the most appropriate sliding window size and reconstruct a new sample space to improve prediction accuracy. Thirdly, the genetic algorithm is applied to perform an adaptive global search for the optimal key parameters of Long Short-Term Memory (LSTM) network, which improves the adaptability of the method on RUL prediction. In order to verify effectiveness, the model was actually applied to NASA batteries, and the experimental results show that the proposed method has higher accuracy and generality than other traditional methods.
引用
收藏
页码:4344 / 4349
页数:6
相关论文
共 50 条
  • [11] Prediction of remaining useful life and recycling node of lithium-ion batteries based on a hybrid method of LSTM and LightGBM
    Chang, Zeyu
    Tang, Hanlin
    Zhang, Zhiqi
    Zhang, Xiaodong
    Li, Li
    Yu, Yajuan
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2024, 46 (01) : 1 - 13
  • [12] A Hybrid Approach Based on Gaussian Process Regression and LSTM for Remaining Useful Life Prediction of Lithium-ion Batteries
    Guo, Xiaoyu
    Yang, Zikang
    Liu, Yujia
    Fang, Zhendu
    Wei, Zhongbao
    2023 IEEE TRANSPORTATION ELECTRIFICATION CONFERENCE & EXPO, ITEC, 2023,
  • [13] A Bayesian Mixture Neural Network for Remaining Useful Life Prediction of Lithium-Ion Batteries
    Zhang, Shuxin
    Liu, Zhitao
    Su, Hongye
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2022, 8 (04) : 4708 - 4721
  • [14] An indirect remaining useful life prediction of lithium-ion batteries based on a NARX dynamic neural network
    Wei M.
    Wang Q.
    Ye M.
    Li J.-B.
    Xu X.-X.
    Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2022, 44 (03): : 380 - 388
  • [15] Remaining useful life prediction of lithium-ion batteries based on wavelet denoising and transformer neural network
    Hu, Wangyang
    Zhao, Shaishai
    FRONTIERS IN ENERGY RESEARCH, 2022, 10
  • [16] Online Remaining Useful Life Prediction of Lithium-ion Batteries Based on Hybrid Model
    Sun, Jing
    Yan, Huiyi
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2025, 172 (04)
  • [17] Lithium-ion batteries remaining useful life prediction based on BLS-RVM
    Chen, Zewang
    Shi, Na
    Ji, Yufan
    Niu, Mu
    Wang, Youren
    ENERGY, 2021, 234
  • [18] Prediction of remaining useful life of lithium-ion batteries based on PCA-GPR
    He B.
    Yang X.
    Wang J.
    Zhu X.
    Hu Z.
    Liu Q.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2022, 43 (05): : 484 - 491
  • [19] Lithium-ion batteries remaining useful life prediction based on BLS-RVM
    Chen, Zewang
    Shi, Na
    Ji, Yufan
    Niu, Mu
    Wang, Youren
    Energy, 2021, 234
  • [20] Remaining Useful Life Prediction for Lithium-Ion Batteries Based on the Partial Voltage and Temperature
    Yang, Yanru
    Wen, Jie
    Liang, Jianyu
    Shi, Yuanhao
    Tian, Yukai
    Wang, Jiang
    SUSTAINABILITY, 2023, 15 (02)