Remaining useful life prediction of lithium-ion batteries based on wavelet denoising and transformer neural network

被引:18
|
作者
Hu, Wangyang [1 ]
Zhao, Shaishai [1 ]
机构
[1] Anqing Normal Univ, Sch Elect Engn & Intelligent Mfg, Anqing, Peoples R China
来源
关键词
lithium-ion battery; remaining useful life; wavelet threshold denoising; transformer; model; RUL prediction; STATE; FILTER; PROGNOSIS; VEHICLES; MODEL;
D O I
10.3389/fenrg.2022.969168
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
It is imperative to accurately predict the remaining useful life (RUL) of lithium-ion batteries to ensure the reliability and safety of related industries and facilities. In view of the noise sequence embedded in the measured aging data of lithium-ion batteries and the strong nonlinear characteristics of the aging process, this study proposes a method for predicting lithium-ion batteries' RUL based on the wavelet threshold denoising and transformer model. To specify, firstly, the wavelet threshold denoising method is adopted to preprocess the measured discharging capacity data of lithium-ion batteries to eliminate some noise signals. Second, based on the denoised data, the transformer model output's full connection layer is applied to replace the decoder layer for establishing the RUL prediction model of lithium-ion batteries. Finally, the discharging capacity of each charging-discharging cycle is predicted iteratively, and then the RUL of lithium-ion batteries can be calculated eventually. Two groups of lithium-ion batteries' aging data from the Center for Advanced Life Cycle Engineering (CALCE) at the University of Maryland and the laboratory at Anqing Normal University (AQNU) are employed to verify the proposed method, individually. The experimental results demonstrate that this method can overcome the impacts of data measurement noise, effectively predict the RUL of lithium-ion batteries, and present a sound generalization ability and high accuracy.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Remaining Useful Life Prediction of Lithium-Ion Batteries by Using a Denoising Transformer-Based Neural Network
    Han, Yunlong
    Li, Conghui
    Zheng, Linfeng
    Lei, Gang
    Li, Li
    [J]. ENERGIES, 2023, 16 (17)
  • [2] Transformer Network for Remaining Useful Life Prediction of Lithium-Ion Batteries
    Chen, Daoquan
    Hong, Weicong
    Zhou, Xiuze
    [J]. IEEE ACCESS, 2022, 10 : 19621 - 19628
  • [3] Remaining useful life prediction of lithium-ion batteries based on data denoising and improved transformer
    Zhou, Kaile
    Zhang, Zhiyue
    [J]. JOURNAL OF ENERGY STORAGE, 2024, 100
  • [4] Remaining useful life prediction based on denoising technique and deep neural network for lithium-ion capacitors
    Yang, Hao
    Wang, Penglei
    An, Yabin
    Shi, Changli
    Sun, Xianzhong
    Wang, Kai
    Zhang, Xiong
    Wei, Tongzhen
    Ma, Yanwei
    [J]. ETRANSPORTATION, 2020, 5
  • [5] A Bayesian Mixture Neural Network for Remaining Useful Life Prediction of Lithium-Ion Batteries
    Zhang, Shuxin
    Liu, Zhitao
    Su, Hongye
    [J]. IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2022, 8 (04) : 4708 - 4721
  • [6] Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Neural Network and Adaptive Unscented Kalman Filter
    Wu, Lingtao
    Guo, Wenhao
    Tang, Yuben
    Sun, Youming
    Qin, Tuanfa
    [J]. ELECTRONICS, 2024, 13 (13)
  • [7] Remaining useful life prediction of lithium-ion batteries based on false nearest neighbors and a hybrid neural network
    Ma, Guijun
    Zhang, Yong
    Cheng, Cheng
    Zhou, Beitong
    Hu, Pengchao
    Yuan, Ye
    [J]. APPLIED ENERGY, 2019, 253
  • [8] Remaining Useful Life Estimation for Prognostics of Lithium-Ion Batteries Based on Recurrent Neural Network
    Catelani, Marcantonio
    Ciani, Lorenzo
    Fantacci, Romano
    Patrizi, Gabriele
    Picano, Benedetta
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
  • [9] Remaining useful life prediction for lithium-ion batteries using particle filter and artificial neural network
    Qin, Wei
    Lv, Huichun
    Liu, Chengliang
    Nirmalya, Datta
    Jahanshahi, Peyman
    [J]. INDUSTRIAL MANAGEMENT & DATA SYSTEMS, 2020, 120 (02) : 312 - 328
  • [10] Probabilistic Prediction of Remaining Useful Life of Lithium-ion Batteries
    Zhang, Renjie
    Li, Jialin
    Chen, Yifei
    Tan, Shiyi
    Jiang, Jiaxu
    Yuan, Xinmei
    [J]. 2022 4TH INTERNATIONAL CONFERENCE ON SMART POWER & INTERNET ENERGY SYSTEMS, SPIES, 2022, : 1820 - 1824