Remaining useful life prediction of lithium-ion batteries based on phase space reconstruction and optimized LSTM network

被引:0
|
作者
Qian, Qizheng [1 ]
Zhang, Yong [1 ]
Zheng, Xiujuan [1 ]
Xie, Jin [1 ]
Hao, Weiguang [1 ]
机构
[1] Wuhan Univ Sci & Technol, Sch Informat Sci & Engn, Wuhan 430081, Peoples R China
基金
中国国家自然科学基金;
关键词
Remaining useful life prediction; Phase space reconstruction; Genetic algorithm; Long short-term memory;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
To solve the problems of insufficient adaptability and low prediction accuracy for lithium-ion battery remaining useful life (RUL) prediction, this paper proposes an optimized neural network prediction method to improve prediction ability. Firstly, the original signal is used to decompose and reduce noise by Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN), and extract the residual that best reflects the degradation trend as a feature. Secondly, the phase space reconstruction method can determine the most appropriate sliding window size and reconstruct a new sample space to improve prediction accuracy. Thirdly, the genetic algorithm is applied to perform an adaptive global search for the optimal key parameters of Long Short-Term Memory (LSTM) network, which improves the adaptability of the method on RUL prediction. In order to verify effectiveness, the model was actually applied to NASA batteries, and the experimental results show that the proposed method has higher accuracy and generality than other traditional methods.
引用
收藏
页码:4344 / 4349
页数:6
相关论文
共 50 条
  • [41] Remaining Useful Life Prediction for Lithium-Ion Batteries Based on Exponential Model and Particle Filter
    Zhang, Lijun
    Mu, Zhongqiang
    Sun, Changyan
    IEEE ACCESS, 2018, 6 : 17729 - 17740
  • [42] Remaining useful life prediction of lithium-ion batteries based on autoregression with exogenous variables model
    Huang, Zhelin
    Ma, Zhihua
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2024, 252
  • [43] A Transferable Prediction Approach for the Remaining Useful Life of Lithium-Ion Batteries Based on Small Samples
    Qin, Haochen
    Fan, Xuexin
    Fan, Yaxiang
    Wang, Ruitian
    Shang, Qianyi
    Zhang, Dong
    APPLIED SCIENCES-BASEL, 2023, 13 (14):
  • [44] Remaining Useful Life Prediction for Lithium-Ion Batteries Based on CS-VMD and GRU
    Ding, Guorong
    Wang, Wenbo
    Zhu, Ting
    IEEE ACCESS, 2022, 10 : 89402 - 89413
  • [45] Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Deep Learning and Soft Sensing
    Wang, Zhuqing
    Ma, Qiqi
    Guo, Yangming
    ACTUATORS, 2021, 10 (09)
  • [46] Remaining useful life prediction for lithium-ion batteries in later period based on a fusion model
    Cai, Li
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2023, 45 (02) : 302 - 315
  • [47] Study on Remaining Useful Life Prediction of Lithium-ion Batteries Based on Charge Transfer Resistance
    基于传荷电阻的锂离子电池剩余寿命预测研究
    Dai, Haifeng (tongjidai@tongji.edu.cn); Dai, Haifeng (tongjidai@tongji.edu.cn), 1600, Chinese Mechanical Engineering Society (57): : 105 - 117
  • [48] Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Spherical Cubature Particle Filter
    Wang, Dong
    Yang, Fangfang
    Tsui, Kwok-Leung
    Zhou, Qiang
    Bae, Suk Joo
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2016, 65 (06) : 1282 - 1291
  • [49] Remaining useful life prediction of Lithium-ion batteries based on PSO-RF algorithm
    Wu, Jingjin
    Cheng, Xukun
    Huang, Heng
    Fang, Chao
    Zhang, Ling
    Zhao, Xiaokang
    Zhang, Lina
    Xing, Jiejie
    FRONTIERS IN ENERGY RESEARCH, 2023, 10
  • [50] The development of machine learning-based remaining useful life prediction for lithium-ion batteries
    Xingjun Li
    Dan Yu
    Vilsen S?ren Byg
    Store Daniel Ioan
    Journal of Energy Chemistry , 2023, (07) : 103 - 121