Procedural Content Generation using Neuroevolution and Novelty Search for Diverse Video Game Levels

被引:3
|
作者
Beukman, Michael [1 ]
Cleghorn, Christopher W. [1 ]
James, Steven [1 ]
机构
[1] Univ Witwatersrand, Sch Comp Sci & Appl Math, Johannesburg, South Africa
基金
新加坡国家研究基金会;
关键词
Neuroevolution; Novelty Search; Procedural Content Generation; NETWORKS;
D O I
10.1145/3512290.3528701
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Procedurally generated video game content has the potential to drastically reduce the content creation budget of game developers and large studios. However, adoption is hindered by limitations such as slow generation, as well as low quality and diversity of content. We introduce an evolutionary search-based approach for evolving level generators using novelty search to procedurally generate diverse levels in real time, without requiring training data or detailed domain-specific knowledge. We test our method on two domains, and our results show an order of magnitude speedup in generation time compared to existing methods while obtaining comparable metric scores. We further demonstrate the ability to generalise to arbitrary-sized levels without retraining.
引用
收藏
页码:1028 / 1037
页数:10
相关论文
共 50 条
  • [1] Constrained Novelty Search: A Study on Game Content Generation
    Liapis, Antonios
    Yannakakis, Georgios N.
    Togelius, Julian
    [J]. EVOLUTIONARY COMPUTATION, 2015, 23 (01) : 101 - 129
  • [2] Procedural Content Generation for General Video Game Level Generation
    Zafar, Adeel
    Mujtaba, Hasan
    Beg, Omer
    [J]. INTELIGENCIA ARTIFICIAL-IBEROAMERICAL JOURNAL OF ARTIFICIAL INTELLIGENCE, 2021, 24 (68): : 33 - 36
  • [3] Neuroevolution of Content Layout in the PCG: Angry Bots Video Game
    Raffe, William L.
    Zambetta, Fabio
    Li, Xiaodong
    [J]. 2013 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2013, : 673 - 680
  • [4] Procedural Generation of Video Game Cities for Specific Video Game Genres Using WaveFunctionCollapse (WFC)
    Gaisbauer, Werner
    Raffe, William L.
    Garcia, Jaime A.
    Hlavacs, Helmut
    [J]. CHI PLAY'19: EXTENDED ABSTRACTS OF THE ANNUAL SYMPOSIUM ON COMPUTER-HUMAN INTERACTION IN PLAY, 2019, : 397 - 404
  • [5] Evolutionary Procedural 2D Map Generation using Novelty Search
    Scheibenpflug, Andreas
    Karder, Johannes
    Schaller, Susanne
    Wagner, Stefan
    Affenzeller, Michael
    [J]. PROCEEDINGS OF THE 2016 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'16 COMPANION), 2016, : 39 - 40
  • [6] Enhancements to Constrained Novelty Search Two-Population Novelty Search for Generating Game Content
    Liapis, Antonios
    Yannakakis, Georgios N.
    Togelius, Julian
    [J]. GECCO'13: PROCEEDINGS OF THE 2013 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2013, : 343 - 350
  • [7] Using estimation of distribution algorithm for procedural content generation in video games
    Karkaj, Arash Moradi
    Lotfi, Shahriar
    [J]. GENETIC PROGRAMMING AND EVOLVABLE MACHINES, 2022, 23 (04) : 495 - 533
  • [8] Using estimation of distribution algorithm for procedural content generation in video games
    Arash Moradi Karkaj
    Shahriar Lotfi
    [J]. Genetic Programming and Evolvable Machines, 2022, 23 : 495 - 533
  • [9] Search-Based Procedural Content Generation
    Togelius, Julian
    Yannakakis, Georgios N.
    Stanley, Kenneth O.
    Browne, Cameron
    [J]. APPLICATIONS OF EVOLUTIONARY COMPUTATION, PT I, PROCEEDINGS, 2010, 6024 : 141 - +
  • [10] Using Procedural Content Generation for Storytelling in a Serious Game called Orange Care
    Pereira, Yago Henrique
    Ueda, Roger
    Galhardi, Lucas Busatta
    Brancher, Jacques Dulio
    [J]. 2019 18TH BRAZILIAN SYMPOSIUM ON COMPUTER GAMES AND DIGITAL ENTERTAINMENT (SBGAMES 2019), 2019, : 192 - 197