An abstract framework for parabolic PDEs on evolving spaces

被引:43
|
作者
Alphonse, Amal [1 ]
Elliott, Charles M. [1 ]
Stinner, Bjoern [1 ]
机构
[1] Univ Warwick, Inst Math, Coventry CV4 7AL, W Midlands, England
基金
英国工程与自然科学研究理事会;
关键词
Abstract parabolic equations; evolving Hilbert spaces; well-posedness; FINITE-ELEMENT-METHOD; DIFFERENTIAL-EQUATIONS; EVOLUTION-EQUATIONS; SURFACE; DOMAINS; FORMULATION;
D O I
10.4171/PM/1955
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present an abstract framework for treating the theory of well-posedness of solutions to abstract parabolic partial differential equations on evolving Hilbert spaces. This theory is applicable to variational formulations of PDEs on evolving spatial domains including moving hypersurfaces. We formulate an appropriate time derivative on evolving spaces called the material derivative and define a weak material derivative in analogy with the usual time derivative in fixed domain problems; our setting is abstract and not restricted to evolving domains or surfaces. Then we show well-posedness to a certain class of parabolic PDEs under some assumptions on the parabolic operator and the data.
引用
收藏
页码:1 / 46
页数:46
相关论文
共 50 条
  • [21] SCALAR PARABOLIC PDES AND BRAIDS
    Ghrist, R. W.
    Vandervorst, R. C.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (05) : 2755 - 2788
  • [22] Renormalisation of parabolic stochastic PDEs
    Hairer, Martin
    JAPANESE JOURNAL OF MATHEMATICS, 2018, 13 (02): : 187 - 233
  • [23] Completion of overdetermined parabolic PDEs
    Krupchyk, Katsiaryna
    Tuomela, Jukka
    JOURNAL OF SYMBOLIC COMPUTATION, 2008, 43 (03) : 153 - 167
  • [25] Solutions in Besov spaces of a class of abstract parabolic equations of higher order in time
    Yamamoto, Y
    JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1998, 38 (02): : 201 - 227
  • [26] Adaptive Observer for a Class of Parabolic PDEs
    Ahmed-Ali, T.
    Giri, F.
    Krstic, M.
    Lamnabhi-Lagarrigue, F.
    Burlion, L.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2016, 61 (10) : 3083 - 3090
  • [27] SOLENOIDAL LIPSCHITZ TRUNCATION FOR PARABOLIC PDEs
    Breit, D.
    Diening, L.
    Schwarzacher, S.
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2013, 23 (14): : 2671 - 2700
  • [28] Besov regularity of inhomogeneous parabolic PDEs
    Schneider, Cornelia
    Szemenyei, Flora Orsolya
    PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2023, 4 (05):
  • [29] Validated integration of semilinear parabolic PDEs
    van den Berg, Jan Bouwe
    Breden, Maxime
    Sheombarsing, Ray
    NUMERISCHE MATHEMATIK, 2024, 156 (04) : 1219 - 1287
  • [30] Rate of convergence in homogenization of parabolic PDEs
    Roman, LJ
    Zhang, XS
    Zheng, W
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2003, 6 (02) : 113 - 124