An abstract framework for parabolic PDEs on evolving spaces

被引:43
|
作者
Alphonse, Amal [1 ]
Elliott, Charles M. [1 ]
Stinner, Bjoern [1 ]
机构
[1] Univ Warwick, Inst Math, Coventry CV4 7AL, W Midlands, England
基金
英国工程与自然科学研究理事会;
关键词
Abstract parabolic equations; evolving Hilbert spaces; well-posedness; FINITE-ELEMENT-METHOD; DIFFERENTIAL-EQUATIONS; EVOLUTION-EQUATIONS; SURFACE; DOMAINS; FORMULATION;
D O I
10.4171/PM/1955
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present an abstract framework for treating the theory of well-posedness of solutions to abstract parabolic partial differential equations on evolving Hilbert spaces. This theory is applicable to variational formulations of PDEs on evolving spatial domains including moving hypersurfaces. We formulate an appropriate time derivative on evolving spaces called the material derivative and define a weak material derivative in analogy with the usual time derivative in fixed domain problems; our setting is abstract and not restricted to evolving domains or surfaces. Then we show well-posedness to a certain class of parabolic PDEs under some assumptions on the parabolic operator and the data.
引用
收藏
页码:1 / 46
页数:46
相关论文
共 50 条
  • [31] RKC: An explicit solver for parabolic PDEs
    Sommeijer, BP
    Shampine, LF
    Verwer, JG
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1998, 88 (02) : 315 - 326
  • [32] Backstepping observers for a class of parabolic PDEs
    Smyshlyaev, A
    Krstic, M
    SYSTEMS & CONTROL LETTERS, 2005, 54 (07) : 613 - 625
  • [33] Spike controls for elliptic and parabolic PDEs
    Casas, E.
    Zuazua, E.
    SYSTEMS & CONTROL LETTERS, 2013, 62 (04) : 311 - 318
  • [34] Observer Design with Sparsity for Parabolic PDEs
    Hu, Weiwei
    Demetriou, Michael A.
    IFAC PAPERSONLINE, 2019, 52 (02): : 180 - 182
  • [35] Parabolic PDEs with hysteresis and quasivariational inequalities
    Kenmochi, N.
    Koyama, T.
    Meyer, G.H.
    Nonlinear Analysis, Theory, Methods and Applications, 1998, 34 (05): : 665 - 686
  • [36] A parameter dependence problem in parabolic PDES
    He, M
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES A-MATHEMATICAL ANALYSIS, 2003, 10 (1-3): : 169 - 179
  • [37] Parabolic PDEs with hysteresis and quasivariational inequalities
    Kenmochi, N
    Koyama, T
    Meyer, GH
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 34 (05) : 665 - 686
  • [38] Quasilinear parabolic PDEs with discontinuous hysteresis
    Visintin, Augusto
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2006, 185 (04) : 487 - 519
  • [39] A variational method for a class of parabolic PDEs
    Figalli, Alessio
    Gangbo, Wilfrid
    Yolcu, Tuerkay
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2011, 10 (01) : 207 - 252
  • [40] DEEP SPLITTING METHOD FOR PARABOLIC PDEs
    Beck, Christian
    Becker, Sebastian
    Cheridito, Patrick
    Jentzen, Arnulf
    Neufeld, Ariel
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (05): : A3135 - A3154