Elliptic curves over finite fields with Fibonacci numbers of points

被引:0
|
作者
Bilu, Yuri [1 ,2 ]
Gomez, Carlos A. [3 ]
Gomez, Jhonny C. [3 ]
Luca, Florian [4 ,5 ,6 ]
机构
[1] Univ Bordeaux, IMB, 351 Cours Liberat, F-33405 Talence, France
[2] CNRS, 351 Cours Liberat, F-33405 Talence, France
[3] Univ Valle, Dept Matemat, Calle 13 100-00, Cali 25360, Colombia
[4] Univ Witwatersrand, Sch Math, Johannesburg, South Africa
[5] King Abdulaziz Univ, Res Grp Algebra Struct & Applicat, Jeddah, Saudi Arabia
[6] UNAM, Ctr Ciencias Matemat, Morelia, Michoacan, Mexico
来源
关键词
Fibonacci numbers; elliptic curves; linear forms in logarithms; Baker-Davenport reduction; LOGARITHMS; THEOREM;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a prime power q and an elliptic curve E over F-q having q +1- a points, where a is an element of [-2 root q, 2 root q] let {#E-m}, m >= 1 be the sequence of numbers whose mth term is the number of points of E over F-q(m). In this paper, we determine all instances when #({#E-m}(m >= 1) boolean AND {F-n}(n >= 1)) >= 2, where {F-n}(n >= 1) is the sequence of Fibonacci numbers. That is, we determine all six-tuples (a, q, m(1), m(2), n(1), n(2)) such that #E = q +1- a, #E-m1 = F-n1 and #E-m2 = F-n2.
引用
下载
收藏
页码:711 / 734
页数:24
相关论文
共 50 条
  • [41] Modular curves with many points over finite fields
    Dose, Valerio
    Lido, Guido
    Mercuri, Pietro
    Stirpe, Claudio
    JOURNAL OF ALGEBRA, 2023, 635 : 790 - 821
  • [42] On curves with many rational points over finite fields
    Garcia, A
    FINITE FIELDS WITH APPLICATIONS TO CODING THEORY, CRYPTOGRAPHY AND RELATED AREAS, 2002, : 152 - 163
  • [43] WEIERSTRASS POINTS AND CURVES OVER FINITE-FIELDS
    STOHR, KO
    VOLOCH, JF
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1986, 52 : 1 - 19
  • [44] Bounds for the number of points on curves over finite fields
    Nazar Arakelian
    Herivelto Borges
    Israel Journal of Mathematics, 2018, 228 : 177 - 199
  • [45] Distribution of points on cyclic curves over finite fields
    Meisner, Patrick
    JOURNAL OF NUMBER THEORY, 2017, 177 : 528 - 561
  • [46] Counting points on hyperelliptic curves over finite fields
    Gaudry, P
    Harley, R
    ALGORITHMIC NUMBER THEORY, 2000, 1838 : 313 - 332
  • [47] Curves over finite fields with many points: an introduction
    Voight, J
    COMPUTATIONAL ASPECTS OF ALGEBRAIC CURVES, 2005, 13 : 124 - 144
  • [48] Plane curves with many points over finite fields
    Carlin, ML
    Voloch, JF
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2004, 34 (04) : 1255 - 1259
  • [49] Discriminants of complex multiplication fields of elliptic curves over finite fields
    Luca, Florian
    Shparlinski, Igor E.
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2007, 50 (03): : 409 - 417
  • [50] L-FUNCTIONS OF ELLIPTIC CURVES AND FIBONACCI NUMBERS
    Luca, Florian
    Yalciner, Aynur
    FIBONACCI QUARTERLY, 2013, 51 (02): : 112 - 118