Elliptic curves over finite fields with Fibonacci numbers of points

被引:0
|
作者
Bilu, Yuri [1 ,2 ]
Gomez, Carlos A. [3 ]
Gomez, Jhonny C. [3 ]
Luca, Florian [4 ,5 ,6 ]
机构
[1] Univ Bordeaux, IMB, 351 Cours Liberat, F-33405 Talence, France
[2] CNRS, 351 Cours Liberat, F-33405 Talence, France
[3] Univ Valle, Dept Matemat, Calle 13 100-00, Cali 25360, Colombia
[4] Univ Witwatersrand, Sch Math, Johannesburg, South Africa
[5] King Abdulaziz Univ, Res Grp Algebra Struct & Applicat, Jeddah, Saudi Arabia
[6] UNAM, Ctr Ciencias Matemat, Morelia, Michoacan, Mexico
来源
关键词
Fibonacci numbers; elliptic curves; linear forms in logarithms; Baker-Davenport reduction; LOGARITHMS; THEOREM;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a prime power q and an elliptic curve E over F-q having q +1- a points, where a is an element of [-2 root q, 2 root q] let {#E-m}, m >= 1 be the sequence of numbers whose mth term is the number of points of E over F-q(m). In this paper, we determine all instances when #({#E-m}(m >= 1) boolean AND {F-n}(n >= 1)) >= 2, where {F-n}(n >= 1) is the sequence of Fibonacci numbers. That is, we determine all six-tuples (a, q, m(1), m(2), n(1), n(2)) such that #E = q +1- a, #E-m1 = F-n1 and #E-m2 = F-n2.
引用
下载
收藏
页码:711 / 734
页数:24
相关论文
共 50 条