Elliptic curves over finite fields with Fibonacci numbers of points

被引:0
|
作者
Bilu, Yuri [1 ,2 ]
Gomez, Carlos A. [3 ]
Gomez, Jhonny C. [3 ]
Luca, Florian [4 ,5 ,6 ]
机构
[1] Univ Bordeaux, IMB, 351 Cours Liberat, F-33405 Talence, France
[2] CNRS, 351 Cours Liberat, F-33405 Talence, France
[3] Univ Valle, Dept Matemat, Calle 13 100-00, Cali 25360, Colombia
[4] Univ Witwatersrand, Sch Math, Johannesburg, South Africa
[5] King Abdulaziz Univ, Res Grp Algebra Struct & Applicat, Jeddah, Saudi Arabia
[6] UNAM, Ctr Ciencias Matemat, Morelia, Michoacan, Mexico
来源
关键词
Fibonacci numbers; elliptic curves; linear forms in logarithms; Baker-Davenport reduction; LOGARITHMS; THEOREM;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a prime power q and an elliptic curve E over F-q having q +1- a points, where a is an element of [-2 root q, 2 root q] let {#E-m}, m >= 1 be the sequence of numbers whose mth term is the number of points of E over F-q(m). In this paper, we determine all instances when #({#E-m}(m >= 1) boolean AND {F-n}(n >= 1)) >= 2, where {F-n}(n >= 1) is the sequence of Fibonacci numbers. That is, we determine all six-tuples (a, q, m(1), m(2), n(1), n(2)) such that #E = q +1- a, #E-m1 = F-n1 and #E-m2 = F-n2.
引用
下载
收藏
页码:711 / 734
页数:24
相关论文
共 50 条
  • [21] Integer points on the elliptic curve with Fibonacci numbers
    Park, Jinseo
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024, 55 (02): : 480 - 488
  • [22] The bias conjecture for elliptic curves over finite fields and Hurwitz class numbers in arithmetic progressions
    Ben Kane
    Sudhir Pujahari
    Zichen Yang
    Mathematische Annalen, 2025, 391 (4) : 6073 - 6104
  • [23] Cyclicity statistics for elliptic curves over finite fields
    Vladut, SG
    FINITE FIELDS AND THEIR APPLICATIONS, 1999, 5 (01) : 13 - 25
  • [24] On the lattices from elliptic curves over finite fields
    Sha, Min
    FINITE FIELDS AND THEIR APPLICATIONS, 2015, 31 : 84 - 107
  • [25] Group Structures of Elliptic Curves Over Finite Fields
    Chandee, Vorrapan
    David, Chantal
    Koukoulopoulos, Dimitris
    Smith, Ethan
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2014, 2014 (19) : 5230 - 5248
  • [26] Lattices from elliptic curves over finite fields
    Fukshansky, Lenny
    Maharaj, Hiren
    FINITE FIELDS AND THEIR APPLICATIONS, 2014, 28 : 67 - 78
  • [27] Division polynomials of elliptic curves over finite fields
    Cheon, J
    Hahn, S
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1996, 72 (10) : 226 - 227
  • [28] Digital signature with elliptic curves over the finite fields
    Alinejad, M.
    Zadeh, S. Hassan
    Biranvand, N.
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2022, 25 (05): : 1289 - 1301
  • [29] Group structure of elliptic curves over finite fields
    Wittmann, C
    JOURNAL OF NUMBER THEORY, 2001, 88 (02) : 335 - 344
  • [30] A CONCISE FORMULA ON ELLIPTIC CURVES OVER FINITE FIELDS
    Li, Lingyun
    Zhang, Shaohua
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2010, 17 (01): : 21 - 25