Performance evaluation of the variable refrigerant flow (VRF) air-conditioning system subjected to partial and unbalanced thermal loadings

被引:5
|
作者
Enteria, Napoleon [1 ]
Yamaguchi, Hideki [2 ]
Miyata, Masato [2 ]
Sawachi, Takao [2 ]
Kuwasawa, Yasou [1 ]
机构
[1] BRI, 1 Tachihara, Tsukuba, Ibaraki 3050802, Japan
[2] NILIM, 1 Tachihara, Tsukuba, Ibaraki 3050802, Japan
来源
关键词
Air-conditioning system; Variable refrigerant flow; Thermal loading; Energy consumption;
D O I
10.1299/jtst.2016jtst0013
中图分类号
O414.1 [热力学];
学科分类号
摘要
This paper shows the performance evaluation of the variable refrigerant flow (VRF) air-conditioning system subjected to partial and unbalanced thermal (cooling and heating) loadings. The one outdoor unit's and two indoor units' VRF system was used as a test specimen in the controlled outdoor chamber in which temperature and humidity were controlled. The indoor chamber thermal loading was controlled from full to partial thermal loadings and from balanced to unbalanced thermal loadings with respect to the specified rated capacity of the test specimen. The purpose of this study is to determine the real performance of the system when it is operating under actual operating situations. The general results show that the system coefficient of performance much depends on the partial and unbalanced thermal loadings. It is shown that the system maximum coefficient of performance occurred at around 50% of the rated thermal loadings. It is shown that as the load balance ratio decreases, the system coefficient of performance decreases, particularly for the cooling operation, due to the increase of compressor speed to support the refrigerant sub-cooling. In the heating operation, the compressor speed increase is very minimal which results in a very small decrease of the system coefficient of performance as the load balance ratio decreases. Based on this study, the system coefficient of performance becomes much different as the system is operating at partial thermal loadings. Also, during the unbalanced thermal loadings, the system coefficient of performance further decreases, particularly during the cooling operation. With the results of the study and analyses of the system operation, it is important to consider how the VRF system operates in an actual building when estimating the energy consumption of the VRF air-conditioning system to be installed in a new or in a retrofitted building.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Performance evaluation of the variable refrigerant flow (VRF) air-conditioning system subjected to partial loadings at different outdoor air temperatures
    Enteria, Napoleon
    Yamaguchi, Hideki
    Miyata, Masato
    Sawachi, Takao
    Kuwasawa, Yasuo
    [J]. JOURNAL OF THERMAL SCIENCE AND TECHNOLOGY, 2016, 11 (02):
  • [2] Performance evaluation of the variable refrigerant flow (VRF) air-conditioning system during the heating-defrosting cyclic operation
    Enteria, Napoleon
    Yamaguchi, Hideki
    Miyata, Masato
    Sawachi, Takao
    Kuwasawa, Yasuo
    [J]. JOURNAL OF THERMAL SCIENCE AND TECHNOLOGY, 2017, 12 (02):
  • [3] EXERGY ANALYSIS OF THE PERFORMANCE OF A VARIABLE REFRIGERANT FLOW (VRF) AIR CONDITIONING SYSTEM
    Padilla, Miguel
    [J]. INTERNATIONAL JOURNAL OF AIR-CONDITIONING AND REFRIGERATION, 2011, 19 (01) : 57 - 68
  • [4] Experimental evaluation and simulation of a variable refrigerant- flow (VRF) air-conditioning system with outdoor air processing unit
    Park, Doo Yong
    Yun, Gyeong
    Kim, Kang Soo
    [J]. ENERGY AND BUILDINGS, 2017, 146 : 122 - 140
  • [5] A refrigerant charge fault detection method for variable refrigerant flow (VRF) air-conditioning systems
    Liu, Jiangyan
    Hu, Yunpeng
    Chen, Huanxin
    Wang, Jiangyu
    Li, Guannan
    Hu, Wenju
    [J]. APPLIED THERMAL ENGINEERING, 2016, 107 : 284 - 293
  • [6] Development of Energy Efficiency Estimation Method for Variable Refrigerant Flow Air-Conditioning System with Unbalanced Heat Load Operation
    Miyata, Masato
    Kurotori, Koji
    Enteria, Napoleon
    Yamaguchi, Hideki
    Sawachi, Takao
    Kuwasawa, Yasuo
    [J]. PROCEEDINGS OF BUILDING SIMULATION 2019: 16TH CONFERENCE OF IBPSA, 2020, : 1898 - 1905
  • [7] Coordinated optimization of the variable refrigerant flow and variable air volume combined air-conditioning system in heating conditions
    Zhu, Yonghua
    Jin, Xinqiao
    Du, Zhimin
    He, Chao
    [J]. SCIENCE AND TECHNOLOGY FOR THE BUILT ENVIRONMENT, 2015, 21 (07) : 904 - 916
  • [8] Energy simulation in the variable refrigerant flow air-conditioning system under cooling conditions
    Zhou, Y. P.
    Wu, J. Y.
    Wang, R. Z.
    Shiochi, S.
    [J]. ENERGY AND BUILDINGS, 2007, 39 (02) : 212 - 220
  • [9] Energy Studies on Central and Variable Refrigerant Flow Air-Conditioning Systems
    Abdullah, H.
    Nitamakwuavan, S.
    Jalaludin, A. F.
    [J]. 4TH INTERNATIONAL MEETING OF ADVANCES IN THERMOFLUIDS (IMAT 2011), PT 1 AND 2, 2012, 1440 : 486 - 490
  • [10] A review of recent advancements of variable refrigerant flow air-conditioning systems
    Wan, Hanlong
    Cao, Tao
    Hwang, Yunho
    Oh, Saikee
    [J]. APPLIED THERMAL ENGINEERING, 2020, 169