AutoCCS: automated collision cross-section calculation software for ion mobility spectrometry-mass spectrometry

被引:12
|
作者
Lee, Joon-Yong [1 ]
Bilbao, Aivett [1 ]
Conant, Christopher R. [1 ]
Bloodsworth, Kent J. [1 ]
Orton, Daniel J. [1 ]
Zhou, Mowei [1 ]
Wilson, Jesse W. [1 ]
Zheng, Xueyun [1 ]
Webb, Ian K. [2 ]
Li, Ailin [1 ]
Hixson, Kim K. [1 ]
Fjeldsted, John C. [3 ]
Ibrahim, Yehia M. [1 ]
Payne, Samuel H. [4 ]
Jansson, Christer [1 ]
Smith, Richard D. [1 ]
Metz, Thomas O. [1 ]
机构
[1] Pacific Northwest Natl Lab, Earth & Biol Sci Directorate, Richland, WA 99352 USA
[2] Indiana Univ, Dept Chem & Chem Biol, Purdue Univ, Indianapolis, IN 46202 USA
[3] Agilent Technol, Santa Clara, CA 95051 USA
[4] Brigham Young Univ, Dept Biol, Provo, UT 84602 USA
基金
美国国家卫生研究院;
关键词
D O I
10.1093/bioinformatics/btab429
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Ion mobility spectrometry (IMS) separations are increasingly used in conjunction with mass spectrometry (MS) for separation and characterization of ionized molecular species. Information obtained from IMS measurements includes the ion's collision cross section (CCS), which reflects its size and structure and constitutes a descriptor for distinguishing similar species in mixtures that cannot be separated using conventional approaches. Incorporating CCS into MS-based workflows can improve the specificity and confidence of molecular identification. At present, there is no automated, open-source pipeline for determining CCS of analyte ions in both targeted and untargeted fashion, and intensive user-assisted processing with vendor software and manual evaluation is often required. Results: We present AutoCCS, an open-source software to rapidly determine CCS values from IMS-MS measurements. We conducted various IMS experiments in different formats to demonstrate the flexibility of AutoCCS for automated CCS calculation: (i) stepped-field methods for drift tube-based IMS (DTIMS), (ii) single-field methods for DTIMS (supporting two calibration methods: a standard and a new enhanced method) and (iii) linear calibration for Bruker timsTOF and non-linear calibration methods for traveling wave based-IMS in Waters Synapt and Structures for Lossless Ion Manipulations. We demonstrated that AutoCCS offers an accurate and reproducible determination of CCS for both standard and unknown analyte ions in various IMS-MS platforms, IMS-field methods, ionization modes and collision gases, without requiring manual processing.
引用
收藏
页码:4193 / 4201
页数:9
相关论文
共 50 条
  • [41] Experimental simulation of negative ion chemistry in Martian atmosphere using ion mobility spectrometry-mass spectrometry
    Sabo, Martin
    Lichvanova, Zuzana
    Orszagh, Juraj
    Mason, Nigel
    Matejcik, Stefan
    EUROPEAN PHYSICAL JOURNAL D, 2014, 68 (08):
  • [42] Determination of the collision cross sections of cardiolipins and phospholipids from Pseudomonas aeruginosa by traveling wave ion mobility spectrometry-mass spectrometry using a novel correction strategy
    Estelle Deschamps
    Isabelle Schmitz-Afonso
    Annick Schaumann
    Emmanuelle Dé
    Corinne Loutelier-Bourhis
    Stéphane Alexandre
    Carlos Afonso
    Analytical and Bioanalytical Chemistry, 2019, 411 : 8123 - 8131
  • [43] High-resolution ion mobility spectrometry-mass spectrometry of isomeric/isobaric ribonucleotide variants
    Kenderdine, Thomas
    Nemati, Reza
    Baker, Andrew
    Palmer, Martin
    Ujma, Jakub
    FitzGibbon, Molly
    Deng, Limin
    Royzen, Maksim
    Langridge, James
    Fabris, Daniele
    JOURNAL OF MASS SPECTROMETRY, 2020, 55 (02):
  • [44] Ion Mobility Spectrometry-Mass Spectrometry of Intrinsically Unfolded Proteins: Trying to Put Order into Disorder
    Knapman, T. W.
    Valette, N. M.
    Warriner, S. L.
    Ashcroft, A. E.
    CURRENT ANALYTICAL CHEMISTRY, 2013, 9 (02) : 181 - 191
  • [45] Characterization of Anticancer Drug Protomers Using Electrospray Ionization and Ion Mobility Spectrometry-Mass Spectrometry
    Basuri, Pallab
    Safferthal, Marc
    Kovacevic, Borislav
    Schorr, Pascal
    Riedel, Jerome
    Pagel, Kevin
    Volmer, Dietrich A.
    Journal of the American Society for Mass Spectrometry, 1600, 35 (12): : 2869 - 2876
  • [46] Differential mobility spectrometry-mass spectrometry for isotope ratio analysis
    Ayodeji, Ifeoluwa
    Evans-Nguyen, Theresa
    Badal, Sunil
    MacLean, Garett
    Shelley, Jacob
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [47] Use of ion mobility mass spectrometry and a collision cross-section algorithm to study an organometallic ruthenium anticancer complex and its adducts with a DNA oligonucleotide
    Williams, Jonathan P.
    Lough, Julie Ann
    Campuzano, Iain
    Richardson, Keith
    Sadler, Peter J.
    RAPID COMMUNICATIONS IN MASS SPECTROMETRY, 2009, 23 (22) : 3563 - 3569
  • [48] Following Structural Changes by Thermal Denaturation Using Trapped Ion Mobility Spectrometry-Mass Spectrometry
    Fouque, Kevin Jeanne Dit
    Fernandez-Lima, Francisco
    JOURNAL OF PHYSICAL CHEMISTRY B, 2020, 124 (29): : 6257 - 6265
  • [49] LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility-Mass Spectrometry-Based Lipidomics
    Zhou, Zhiwei
    Tu, Jia
    Xiong, Xin
    Shen, Xiaotao
    Zhu, Zheng-Jiang
    ANALYTICAL CHEMISTRY, 2017, 89 (17) : 9559 - 9566