AutoCCS: automated collision cross-section calculation software for ion mobility spectrometry-mass spectrometry

被引:12
|
作者
Lee, Joon-Yong [1 ]
Bilbao, Aivett [1 ]
Conant, Christopher R. [1 ]
Bloodsworth, Kent J. [1 ]
Orton, Daniel J. [1 ]
Zhou, Mowei [1 ]
Wilson, Jesse W. [1 ]
Zheng, Xueyun [1 ]
Webb, Ian K. [2 ]
Li, Ailin [1 ]
Hixson, Kim K. [1 ]
Fjeldsted, John C. [3 ]
Ibrahim, Yehia M. [1 ]
Payne, Samuel H. [4 ]
Jansson, Christer [1 ]
Smith, Richard D. [1 ]
Metz, Thomas O. [1 ]
机构
[1] Pacific Northwest Natl Lab, Earth & Biol Sci Directorate, Richland, WA 99352 USA
[2] Indiana Univ, Dept Chem & Chem Biol, Purdue Univ, Indianapolis, IN 46202 USA
[3] Agilent Technol, Santa Clara, CA 95051 USA
[4] Brigham Young Univ, Dept Biol, Provo, UT 84602 USA
基金
美国国家卫生研究院;
关键词
D O I
10.1093/bioinformatics/btab429
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Ion mobility spectrometry (IMS) separations are increasingly used in conjunction with mass spectrometry (MS) for separation and characterization of ionized molecular species. Information obtained from IMS measurements includes the ion's collision cross section (CCS), which reflects its size and structure and constitutes a descriptor for distinguishing similar species in mixtures that cannot be separated using conventional approaches. Incorporating CCS into MS-based workflows can improve the specificity and confidence of molecular identification. At present, there is no automated, open-source pipeline for determining CCS of analyte ions in both targeted and untargeted fashion, and intensive user-assisted processing with vendor software and manual evaluation is often required. Results: We present AutoCCS, an open-source software to rapidly determine CCS values from IMS-MS measurements. We conducted various IMS experiments in different formats to demonstrate the flexibility of AutoCCS for automated CCS calculation: (i) stepped-field methods for drift tube-based IMS (DTIMS), (ii) single-field methods for DTIMS (supporting two calibration methods: a standard and a new enhanced method) and (iii) linear calibration for Bruker timsTOF and non-linear calibration methods for traveling wave based-IMS in Waters Synapt and Structures for Lossless Ion Manipulations. We demonstrated that AutoCCS offers an accurate and reproducible determination of CCS for both standard and unknown analyte ions in various IMS-MS platforms, IMS-field methods, ionization modes and collision gases, without requiring manual processing.
引用
收藏
页码:4193 / 4201
页数:9
相关论文
共 50 条
  • [21] Differential Mobility Spectrometry-Mass Spectrometry for Atomic Analysis
    Sinatra, Francy L.
    Wu, Tianpeng
    Manolakos, Spiros
    Wang, Jing
    Evans-Nguyen, Theresa G.
    ANALYTICAL CHEMISTRY, 2015, 87 (03) : 1685 - 1693
  • [22] The Role of Ion Mobility Spectrometry-Mass Spectrometry in the Analysis of Protein Reference Standards
    Pritchard, Caroline
    O'Connor, Gavin
    Ashcroft, Alison E.
    ANALYTICAL CHEMISTRY, 2013, 85 (15) : 7205 - 7212
  • [23] Collision cross section calibrants for negative ion mode traveling wave ion mobility-mass spectrometry
    Forsythe, Jay G.
    Petrov, Anton S.
    Walker, Chelsea A.
    Allen, Samuel J.
    Pellissier, Jarrod S.
    Bush, Matthew F.
    Hud, Nicholas V.
    Fernandez, Facundo M.
    ANALYST, 2015, 14 (20) : 6853 - 6861
  • [24] An Interlaboratory Evaluation of Drift Tube Ion Mobility-Mass Spectrometry Collision Cross Section Measurements
    Stow, Sarah M.
    Causon, Tim J.
    Zheng, Xueyun
    Kurulugama, Ruwan T.
    Mairinger, Teresa
    May, Jody C.
    Rennie, Emma E.
    Baker, Erin S.
    Smith, Richard D.
    McLean, John A.
    Hann, Stephan
    Fjeldsted, John C.
    ANALYTICAL CHEMISTRY, 2017, 89 (17) : 9048 - 9055
  • [25] Letter: A simple ion source set-up for desorption/ionization on silicon with ion mobility spectrometry and ion mobility spectrometry-mass spectrometry
    Adamov, Alexey
    Sysoev, Alexey A.
    Grigoras, Kestutis
    Laakia, Jaakko
    Kotiaho, Tapio
    EUROPEAN JOURNAL OF MASS SPECTROMETRY, 2011, 17 (06) : 593 - 597
  • [26] Ion mobility-mass spectrometry Collision Cross Section Prediction (CCSP) and application to prebiotic chemistry
    Soper-Hopper, Molly
    Petrov, Anton
    Howard, J.
    Yu, Sheng-Sheng
    Forsythe, Jay
    Grover, Martha
    Fernandez, Facundo
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254
  • [27] Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility-Mass Spectrometry
    Poland, James C.
    Leaptrot, Katrina L.
    Sherrod, Stacy D.
    Flynn, Charles Robb
    McLean, John A.
    JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 2020, 31 (08) : 1625 - 1631
  • [28] Improving the Speed and Selectivity of Newborn Screening Using Ion Mobility Spectrometry-Mass Spectrometry
    Dodds, James N.
    Baker, Erin S.
    ANALYTICAL CHEMISTRY, 2021, 93 (51) : 17094 - 17102
  • [29] Advances in ion mobility spectrometry-mass spectrometry reveal key insights into amyloid assembly
    Woods, L. A.
    Radford, S. E.
    Ashcroft, A. E.
    BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS, 2013, 1834 (06): : 1257 - 1268
  • [30] METLIN-CCS: an ion mobility spectrometry collision cross section database
    Erin S. Baker
    Corey Hoang
    Winnie Uritboonthai
    Heino M. Heyman
    Brian Pratt
    Michael MacCoss
    Brendan MacLean
    Robert Plumb
    Aries Aisporna
    Gary Siuzdak
    Nature Methods, 2023, 20 : 1836 - 1837