AutoCCS: automated collision cross-section calculation software for ion mobility spectrometry-mass spectrometry

被引:12
|
作者
Lee, Joon-Yong [1 ]
Bilbao, Aivett [1 ]
Conant, Christopher R. [1 ]
Bloodsworth, Kent J. [1 ]
Orton, Daniel J. [1 ]
Zhou, Mowei [1 ]
Wilson, Jesse W. [1 ]
Zheng, Xueyun [1 ]
Webb, Ian K. [2 ]
Li, Ailin [1 ]
Hixson, Kim K. [1 ]
Fjeldsted, John C. [3 ]
Ibrahim, Yehia M. [1 ]
Payne, Samuel H. [4 ]
Jansson, Christer [1 ]
Smith, Richard D. [1 ]
Metz, Thomas O. [1 ]
机构
[1] Pacific Northwest Natl Lab, Earth & Biol Sci Directorate, Richland, WA 99352 USA
[2] Indiana Univ, Dept Chem & Chem Biol, Purdue Univ, Indianapolis, IN 46202 USA
[3] Agilent Technol, Santa Clara, CA 95051 USA
[4] Brigham Young Univ, Dept Biol, Provo, UT 84602 USA
基金
美国国家卫生研究院;
关键词
D O I
10.1093/bioinformatics/btab429
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Ion mobility spectrometry (IMS) separations are increasingly used in conjunction with mass spectrometry (MS) for separation and characterization of ionized molecular species. Information obtained from IMS measurements includes the ion's collision cross section (CCS), which reflects its size and structure and constitutes a descriptor for distinguishing similar species in mixtures that cannot be separated using conventional approaches. Incorporating CCS into MS-based workflows can improve the specificity and confidence of molecular identification. At present, there is no automated, open-source pipeline for determining CCS of analyte ions in both targeted and untargeted fashion, and intensive user-assisted processing with vendor software and manual evaluation is often required. Results: We present AutoCCS, an open-source software to rapidly determine CCS values from IMS-MS measurements. We conducted various IMS experiments in different formats to demonstrate the flexibility of AutoCCS for automated CCS calculation: (i) stepped-field methods for drift tube-based IMS (DTIMS), (ii) single-field methods for DTIMS (supporting two calibration methods: a standard and a new enhanced method) and (iii) linear calibration for Bruker timsTOF and non-linear calibration methods for traveling wave based-IMS in Waters Synapt and Structures for Lossless Ion Manipulations. We demonstrated that AutoCCS offers an accurate and reproducible determination of CCS for both standard and unknown analyte ions in various IMS-MS platforms, IMS-field methods, ionization modes and collision gases, without requiring manual processing.
引用
收藏
页码:4193 / 4201
页数:9
相关论文
共 50 条
  • [31] Architectural Differentiation of Linear and Cyclic Polymeric Isomers by Ion Mobility Spectrometry-Mass Spectrometry
    Hoskins, Jessica N.
    Trimpin, Sarah
    Grayson, Scott M.
    MACROMOLECULES, 2011, 44 (17) : 6915 - 6918
  • [32] Determining the topology of virus assembly intermediates using ion mobility spectrometry-mass spectrometry
    Knapman, Tom W.
    Morton, Victoria L.
    Stonehouse, Nicola J.
    Stockley, Peter G.
    Ashcroft, Alison E.
    RAPID COMMUNICATIONS IN MASS SPECTROMETRY, 2010, 24 (20) : 3033 - 3042
  • [33] METLIN-CCS: an ion mobility spectrometry collision cross section database
    Baker, Erin S.
    Hoang, Corey
    Uritboonthai, Winnie
    Heyman, Heino M.
    Pratt, Brian
    MacCoss, Michael
    MacLean, Brendan
    Plumb, Robert
    Aisporna, Aries
    Siuzdak, Gary
    NATURE METHODS, 2023, 20 (12) : 1836 - 1837
  • [34] Structures of Metallosupramolecular Coordination Assemblies Can Be Obtained by Ion Mobility Spectrometry-Mass Spectrometry
    Brocker, Erin R.
    Anderson, Stanley E.
    Northrop, Brian H.
    Stang, Peter J.
    Bowers, Michael T.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (38) : 13486 - 13494
  • [35] High-Resolution Ion Mobility Spectrometry-Mass Spectrometry on Poly(methyl methacrylate)
    Song, Junkan
    Grun, Christian H.
    Heeren, Ron M. A.
    Janssen, Hans-Gerd
    van den Brink, Oscar F.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (52) : 10168 - 10171
  • [36] MetCCS predictor: a web server for predicting collision cross-section values of metabolites in ion mobility-mass spectrometry based metabolomics
    Zhou, Zhiwei
    Xiong, Xin
    Zhu, Zheng-Jiang
    BIOINFORMATICS, 2017, 33 (14) : 2235 - 2237
  • [37] Distinguishing Protein Chemical Topologies Using Supercharging Ion Mobility Spectrometry-Mass Spectrometry
    Lee, Jiyeon
    Im, Dahye
    Liu, Yajie
    Fang, Jing
    Tian, Xibao
    Kim, Minsu
    Zhang, Wen-Bin
    Seo, Jongcheol
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (51)
  • [38] Determination of the collision cross sections of cardiolipins and phospholipids from Pseudomonas aeruginosa by traveling wave ion mobility spectrometry-mass spectrometry using a novel correction strategy
    Deschamps, Estelle
    Schmitz-Afonso, Isabelle
    Schaumann, Annick
    De, Emmanuelle
    Loutelier-Bourhis, Corinne
    Alexandre, Stephane
    Afonso, Carlos
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2019, 411 (30) : 8123 - 8131
  • [39] Collision Cross-Section Determination and Tandem Mass Spectrometric Analysis of Isomeric Carotenoids Using Electrospray Ion Mobility Time-of-Flight Mass Spectrometry
    Dong, Linlin
    Shion, Henry
    Davis, Roderick G.
    Terry-Penak, Brent
    Castro-Perez, Jose
    van Breemen, Richard B.
    ANALYTICAL CHEMISTRY, 2010, 82 (21) : 9014 - 9021
  • [40] Experimental simulation of negative ion chemistry in Martian atmosphere using ion mobility spectrometry-mass spectrometry
    Martin Sabo
    Zuzana Lichvanová
    Juraj Orszagh
    Nigel Mason
    Štefan Matejčík
    The European Physical Journal D, 2014, 68