Variational Integrators for Dissipative Systems

被引:9
|
作者
Limebeer, David J. N. [1 ]
Ober-Blobaum, Sina [2 ]
Farshi, Farhang Haddad [2 ]
机构
[1] Univ Johannesburg, ZA-2006 Johannesburg, South Africa
[2] Univ Oxford, Dept Engn Sci, Oxford OX1 3PJ, England
基金
英国工程与自然科学研究理事会;
关键词
Heat bath; optimal control; symplectic simulation; transmission line; variational integrators; variational principles; DISCRETE MECHANICS; ORDER;
D O I
10.1109/TAC.2020.2965059
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article uses physical arguments to derive variational integration schemes for dissipative mechanical systems. These integration algorithms find utility in the solution of the equations of motion and optimal control problems for these systems. Engineers usually represent dissipation effects using phenomenological devices such as "dampers." In this article, we replace these dampers with a lossless transmission-line in order that the equations of motion are derivable from a variational principle. The associated system Lagrangian can then be discretized and used to develop low-order variational integration schemes that inherit the advantageous features of their conservative counterparts. The properties of a lossless spring-inerter based transmission system are analyzed in detail, with the resulting variational integration schemes shown to have excellent numerical properties. The article concludes with the analysis of a dissipative variant of the classical Kepler central force problem.
引用
收藏
页码:1381 / 1396
页数:16
相关论文
共 50 条
  • [21] MECHANICAL INTEGRATORS FOR THE INVERSE DYNAMICS OF DISSIPATIVE MULTIBODY SYSTEMS
    Uhlar, Stefan
    Betsch, Peter
    [J]. TRANSACTIONS OF THE CANADIAN SOCIETY FOR MECHANICAL ENGINEERING, 2009, 33 (04) : 575 - 586
  • [22] Stochastic variational quantization of dissipative systems
    Illuminati, F
    Morato, LM
    [J]. NEW PERSPECTIVES IN THE PHYSICS OF MESOSCOPIC SYSTEMS: QUANTUM-LIKE DESCRIPTIONS AND MACROSCOPIC COHERENCE PHENOMENA, 1997, : 152 - 164
  • [23] On dissipative systems and related variational principles
    Bateman, H
    [J]. PHYSICAL REVIEW, 1931, 38 (04): : 815 - 819
  • [24] Application of Variational Integrators in Modeling the Dynamics of Mechanical Systems
    Moiseev, Ilya S.
    Zhilenkov, Anton A.
    [J]. PROCEEDINGS OF THE 2021 IEEE CONFERENCE OF RUSSIAN YOUNG RESEARCHERS IN ELECTRICAL AND ELECTRONIC ENGINEERING (ELCONRUS), 2021, : 554 - 558
  • [25] On variational integrators for optimal control of mechanical control systems
    Colombo, Leonardo
    de Diego, David Martin
    Zuccalli, Marcela
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2012, 106 (01) : 161 - 171
  • [26] Variational integrators for non-autonomous Lagrangian systems
    Colombo, Leonardo
    Fernandez, Manuela Gamonal
    de Diego, David Martin
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 424
  • [27] Error analysis of variational integrators of unconstrained Lagrangian systems
    George W. Patrick
    Charles Cuell
    [J]. Numerische Mathematik, 2009, 113 : 243 - 264
  • [28] Variational Integrators for Interconnected Lagrange-Dirac Systems
    Parks, Helen
    Leok, Melvin
    [J]. JOURNAL OF NONLINEAR SCIENCE, 2017, 27 (05) : 1399 - 1434
  • [29] On variational integrators for optimal control of mechanical control systems
    Leonardo Colombo
    David Martín de Diego
    Marcela Zuccalli
    [J]. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 2012, 106 : 161 - 171
  • [30] VARIATIONAL INTEGRATORS FOR DYNAMICAL SYSTEMS WITH ROTATIONAL DEGREES OF FREEDOM
    Leitz, Thomas
    Ober-Bloebaum, Sina
    Leyendecker, Sigrid
    [J]. 11TH WORLD CONGRESS ON COMPUTATIONAL MECHANICS; 5TH EUROPEAN CONFERENCE ON COMPUTATIONAL MECHANICS; 6TH EUROPEAN CONFERENCE ON COMPUTATIONAL FLUID DYNAMICS, VOLS II - IV, 2014, : 3148 - 3159