Variational Integrators for Interconnected Lagrange-Dirac Systems

被引:5
|
作者
Parks, Helen [1 ]
Leok, Melvin [1 ]
机构
[1] Univ Calif San Diego, Dept Math, 9500 Gilman Dr, La Jolla, CA 92093 USA
基金
美国国家科学基金会;
关键词
Interconnection; Dirac structures; Lagrange-Dirac systems; Variational integrators; Geometric integration; Hamiltonian DAEs; PART I; MECHANICS;
D O I
10.1007/s00332-017-9364-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Interconnected systems are an important class of mathematical models, as they allow for the construction of complex, hierarchical, multiphysics, and multiscale models by the interconnection of simpler subsystems. Lagrange-Dirac mechanical systems provide a broad category of mathematical models that are closed under interconnection, and in this paper, we develop a framework for the interconnection of discrete Lagrange-Dirac mechanical systems, with a view toward constructing geometric structure-preserving discretizations of interconnected systems. This work builds on previous work on the interconnection of continuous Lagrange-Dirac systems (Jacobs and Yoshimura in J Geom Mech 6(1):67-98, 2014) and discrete Dirac variational integrators (Leok and Ohsawa in Found Comput Math 11(5), 529-562, 2011). We test our results by simulating some of the continuous examples given in Jacobs and Yoshimura (2014).
引用
收藏
页码:1399 / 1434
页数:36
相关论文
共 50 条
  • [1] Variational Integrators for Interconnected Lagrange–Dirac Systems
    Helen Parks
    Melvin Leok
    [J]. Journal of Nonlinear Science, 2017, 27 : 1399 - 1434
  • [2] Interconnection and Composition of Dirac Structures for Lagrange-Dirac Systems
    Jacobs, Henry O.
    Yoshimura, Hiroaki
    [J]. 2011 50TH IEEE CONFERENCE ON DECISION AND CONTROL AND EUROPEAN CONTROL CONFERENCE (CDC-ECC), 2011, : 928 - 933
  • [3] Interconnection of Lagrange-Dirac Dynamical Systems for Electric Circuits
    Jacobs, Henry
    Yoshimura, Hiroaki
    Marsden, Jerrold E.
    [J]. NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 : 566 - 569
  • [4] Interconnection of Lagrange-Dirac systems through nonstandard interaction structures
    Abella, Alvaro Rodriguez
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2023, 20 (07)
  • [5] VARIATIONAL INTEGRATORS FOR DISCRETE LAGRANGE PROBLEMS
    Garcia, Pedro L.
    Fernandez, Antonio
    Rodrigo, Cesar
    [J]. JOURNAL OF GEOMETRIC MECHANICS, 2010, 2 (04): : 343 - 374
  • [6] Variational Integrators for Dissipative Systems
    Limebeer, David J. N.
    Ober-Blobaum, Sina
    Farshi, Farhang Haddad
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2020, 65 (04) : 1381 - 1396
  • [7] "SLIMPLECTIC" INTEGRATORS: VARIATIONAL INTEGRATORS FOR GENERAL NONCONSERVATIVE SYSTEMS
    Tsang, David
    Galley, Chad R.
    Stein, Leo C.
    Turner, Alec
    [J]. ASTROPHYSICAL JOURNAL LETTERS, 2015, 809 (01)
  • [8] Constructing equivalence-preserving Dirac variational integrators with forces
    Parks, Helen
    Leok, Melvin
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2019, 39 (04) : 1706 - 1726
  • [9] Variational integrators for fractional Birkhoffian systems
    He, Lin
    Wu, Huibin
    Mei, Fengxiang
    [J]. NONLINEAR DYNAMICS, 2017, 87 (04) : 2325 - 2334
  • [10] Variational integrators for forced Birkhoffian systems
    Kong, Xinlei
    Wu, Huibin
    Mei, Fengxiang
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2013, 225 : 326 - 332